Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY, 10032, USA.
Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA.
Nat Commun. 2024 Jul 20;15(1):6113. doi: 10.1038/s41467-024-50471-1.
Aberrant DNA methylation patterns have been used for cancer detection. However, DNA hemi-methylation, present at about 10% CpG dinucleotides, has been less well studied. Here we show that a majority of differentially hemi-methylated regions (DHMRs) in liver tumor DNA or plasma cells free (cf) DNA do not overlap with differentially methylated regions (DMRs) of the same samples, indicating that DHMRs could serve as independent biomarkers. Furthermore, we analyzed the cfDNA methylomes of 215 samples from individuals with liver or brain cancer and individuals without cancer (controls), and trained machine learning models using DMRs, DHMRs or both. The models incorporated with both DMRs and DHMRs show a superior performance compared to models trained with DMRs or DHMRs, with AUROC being 0.978, 0.990, and 0.983 in distinguishing control, liver and brain cancer, respectively, in a validation cohort. This study supports the potential of utilizing both DMRs and DHMRs for multi-cancer detection.
异常的 DNA 甲基化模式已被用于癌症检测。然而,约 10%的 CpG 二核苷酸存在的 DNA 半甲基化,研究较少。在这里,我们表明肝肿瘤 DNA 或血浆细胞游离(cf)DNA 中大多数差异半甲基化区域(DHMR)与相同样本的差异甲基化区域(DMR)不重叠,表明 DHMR 可作为独立的生物标志物。此外,我们分析了 215 个来自肝癌或脑癌患者和无癌症(对照)个体的 cfDNA 甲基组学样本,并使用 DMR、DHMR 或两者都训练机器学习模型。与仅使用 DMR 或 DHMR 训练的模型相比,包含 DMR 和 DHMR 的模型在验证队列中分别区分对照、肝癌和脑癌的 AUC 分别为 0.978、0.990 和 0.983。这项研究支持同时利用 DMR 和 DHMR 进行多癌检测的潜力。