Suppr超能文献

利用异种移植模型中干血斑中的 ctDNA 进行疾病负担和反应的纵向监测。

Longitudinal monitoring of disease burden and response using ctDNA from dried blood spots in xenograft models.

机构信息

Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.

Cancer Research UK Major Centre-Cambridge, University of Cambridge, Cambridge, UK.

出版信息

EMBO Mol Med. 2022 Aug 8;14(8):e15729. doi: 10.15252/emmm.202215729. Epub 2022 Jun 13.

Abstract

Whole-genome sequencing (WGS) of circulating tumour DNA (ctDNA) is now a clinically important biomarker for predicting therapy response, disease burden and disease progression. However, the translation of ctDNA monitoring into vital preclinical PDX models has not been possible owing to low circulating blood volumes in small rodents. Here, we describe the longitudinal detection and monitoring of ctDNA from minute volumes of blood in PDX mice. We developed a xenograft Tumour Fraction (xTF) metric using shallow WGS of dried blood spots (DBS), and demonstrate its application to quantify disease burden, monitor treatment response and predict disease outcome in a preclinical study of PDX mice. Further, we show how our DBS-based ctDNA assay can be used to detect gene-specific copy number changes and examine the copy number landscape over time. Use of sequential DBS ctDNA assays could transform future trial designs in both mice and patients by enabling increased sampling and molecular monitoring.

摘要

全基因组测序(WGS)的循环肿瘤 DNA(ctDNA)现在是预测治疗反应、疾病负担和疾病进展的重要临床生物标志物。然而,由于小啮齿动物的循环血量低,ctDNA 监测在重要的临床前 PDX 模型中的转化一直难以实现。在这里,我们描述了从 PDX 小鼠的微量血液中进行 ctDNA 的纵向检测和监测。我们使用浅 WGS 开发了一种异种移植物肿瘤分数(xTF)指标,并在 PDX 小鼠的临床前研究中证明了其在量化疾病负担、监测治疗反应和预测疾病结局方面的应用。此外,我们展示了如何使用基于 DBS 的 ctDNA 检测来检测基因特异性拷贝数变化,并随时间检查拷贝数图谱。通过增加采样和分子监测,基于 DBS 的 ctDNA 检测的连续使用可以改变未来在小鼠和患者中的试验设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5422/9358392/d66e4bc1439a/EMMM-14-e15729-g007.jpg

相似文献

1
Longitudinal monitoring of disease burden and response using ctDNA from dried blood spots in xenograft models.
EMBO Mol Med. 2022 Aug 8;14(8):e15729. doi: 10.15252/emmm.202215729. Epub 2022 Jun 13.
2
Detection of ctDNA from Dried Blood Spots after DNA Size Selection.
Clin Chem. 2020 May 1;66(5):697-705. doi: 10.1093/clinchem/hvaa050.
3
Can a Liquid Biopsy Detect Circulating Tumor DNA With Low-passage Whole-genome Sequencing in Patients With a Sarcoma? A Pilot Evaluation.
Clin Orthop Relat Res. 2025 Jan 1;483(1):39-48. doi: 10.1097/CORR.0000000000003161. Epub 2024 Jun 21.
4
Longitudinal profiling of circulating tumour DNA for tracking tumour dynamics in pancreatic cancer.
BMC Cancer. 2022 Apr 7;22(1):369. doi: 10.1186/s12885-022-09387-6.
7
Early circulating tumor DNA changes predict outcomes in head and neck cancer patients under re-radiotherapy.
Int J Cancer. 2025 Feb 15;156(4):853-864. doi: 10.1002/ijc.35152. Epub 2024 Aug 30.
8
Whole-genome Mutational Analysis for Tumor-informed Detection of Circulating Tumor DNA in Patients with Urothelial Carcinoma.
Eur Urol. 2024 Oct;86(4):301-311. doi: 10.1016/j.eururo.2024.05.014. Epub 2024 May 29.
10
Ultrasensitive plasma-based monitoring of tumor burden using machine-learning-guided signal enrichment.
Nat Med. 2024 Jun;30(6):1655-1666. doi: 10.1038/s41591-024-03040-4. Epub 2024 Jun 14.

引用本文的文献

1
Sensitive monitoring of xenograft cancer models using cell-free DNA.
J Transl Med. 2025 Jun 17;23(1):663. doi: 10.1186/s12967-025-06506-2.
2
Circulating tumor DNA laboratory processes and clinical applications in nasopharyngeal carcinoma.
Front Oncol. 2025 May 15;15:1520733. doi: 10.3389/fonc.2025.1520733. eCollection 2025.
4
Poly (ADP-ribose) polymerase inhibitor therapy and mechanisms of resistance in epithelial ovarian cancer.
Front Oncol. 2024 Jul 29;14:1414112. doi: 10.3389/fonc.2024.1414112. eCollection 2024.
5
Tumor detection by analysis of both symmetric- and hemi-methylation of plasma cell-free DNA.
Nat Commun. 2024 Jul 20;15(1):6113. doi: 10.1038/s41467-024-50471-1.
6
Preparation and processing of dried blood spots for microRNA sequencing.
Biol Methods Protoc. 2023 Sep 20;8(1):bpad020. doi: 10.1093/biomethods/bpad020. eCollection 2023.
7
The functional and clinical roles of liquid biopsy in patient-derived models.
J Hematol Oncol. 2023 Apr 8;16(1):36. doi: 10.1186/s13045-023-01433-5.
8
Liquid biopsy: blood-based analyses of circulating cell-free DNA in xenografts.
EMBO Mol Med. 2022 Aug 8;14(8):e16326. doi: 10.15252/emmm.202216326. Epub 2022 Jul 29.

本文引用的文献

1
Circulating tumor DNA and liquid biopsy in oncology.
Nat Cancer. 2020 Mar;1(3):276-290. doi: 10.1038/s43018-020-0043-5. Epub 2020 Mar 20.
2
Refined characterization of circulating tumor DNA through biological feature integration.
Sci Rep. 2022 Feb 4;12(1):1928. doi: 10.1038/s41598-022-05606-z.
3
ctDNA: An emerging neoadjuvant biomarker in resectable solid tumors.
PLoS Med. 2021 Oct 12;18(10):e1003771. doi: 10.1371/journal.pmed.1003771. eCollection 2021 Oct.
4
Enhanced detection of minimal residual disease by targeted sequencing of phased variants in circulating tumor DNA.
Nat Biotechnol. 2021 Dec;39(12):1537-1547. doi: 10.1038/s41587-021-00981-w. Epub 2021 Jul 22.
5
Liquid Biopsy for Advanced NSCLC: A Consensus Statement From the International Association for the Study of Lung Cancer.
J Thorac Oncol. 2021 Oct;16(10):1647-1662. doi: 10.1016/j.jtho.2021.06.017. Epub 2021 Jul 8.
6
Evaluating the analytical validity of circulating tumor DNA sequencing assays for precision oncology.
Nat Biotechnol. 2021 Sep;39(9):1115-1128. doi: 10.1038/s41587-021-00857-z. Epub 2021 Apr 12.
7
Genome-wide Copy-number Alterations in Circulating Tumor DNA as a Novel Biomarker for Patients with High-grade Serous Ovarian Cancer.
Clin Cancer Res. 2021 May 1;27(9):2549-2559. doi: 10.1158/1078-0432.CCR-20-3345. Epub 2020 Dec 15.
8
Clinical relevance of blood-based ctDNA analysis: mutation detection and beyond.
Br J Cancer. 2021 Jan;124(2):345-358. doi: 10.1038/s41416-020-01047-5. Epub 2020 Sep 24.
9
Quantitative in vivo bioluminescence imaging of orthotopic patient-derived glioblastoma xenografts.
Sci Rep. 2020 Sep 21;10(1):15361. doi: 10.1038/s41598-020-72322-x.
10
ctDNA monitoring using patient-specific sequencing and integration of variant reads.
Sci Transl Med. 2020 Jun 17;12(548). doi: 10.1126/scitranslmed.aaz8084.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验