Suppr超能文献

通过全共轭嵌段共聚物的聚合诱导结晶驱动自组装高效制备长度和宽度可控的给体-受体纳米带

Highly Efficient Preparation of Length and Width-Controllable Donor-Acceptor Nanoribbons via Polymerization-Induced Crystallization-Driven Self-Assembly of Fully Conjugated Block Copolymers.

作者信息

Kim Hwangseok, Lee Jaeho, Hwang Soon-Hyeok, Yun Namkyu, Park Songyee, Choi Tae-Lim

机构信息

Department of Materials, ETH Zürich, Zürich 8093, Switzerland.

Department of Chemistry, Seoul National University, Seoul 08826, South Korea.

出版信息

J Am Chem Soc. 2024 Jul 31;146(30):20750-20757. doi: 10.1021/jacs.4c04039. Epub 2024 Jul 20.

Abstract

Despite the high potential of one-dimensional (1D) donor-acceptor (D-A) coaxial nanostructures in bulk-heterojunction solar cell applications, the preparation of such 1D nanostructures using π-conjugated polymers has remained elusive. Herein, we demonstrate the first example of D-A semiconducting nanoribbons based on fully conjugated block copolymers (BCPs) prepared in a highly efficient procedure with controllable width and length via living crystallization-driven self-assembly (CDSA). Initially, Suzuki-Miyaura catalyst-transfer polymerization was employed to successfully synthesize BCPs containing two types of acceptor shells as the first block, followed by a donor poly(3-propylthiophene) core as the second block. The limited solubility and high crystallinity of the core induced a polymerization-induced crystallization-driven self-assembly (PI-CDSA) of the BCPs into nanoribbons during polymerization, providing a tunable width (7.6-39.6 nm) depending on the length of the polymer backbone. Surprisingly, purifying as-synthesized BCPs via simple precipitation directly yielded short and uniform seed structures, greatly shortening the overall protocol by eliminating the time-consuming process of initial aging and breaking down to the seed required for the conventional CDSA. With this new highly efficient method, we achieved length control over a broad range from 169 to 2210 nm, with high precision (/ < 1.20). Furthermore, combining self-seeding and seeded growth from two different D-A-type BCPs enabled continuous living epitaxial growth from each end of the nanoribbons, resulting in B-A-B triblock D-A semiconducting comicelles with controlled length.

摘要

尽管一维(1D)供体-受体(D-A)同轴纳米结构在体异质结太阳能电池应用中具有很高的潜力,但使用π共轭聚合物制备此类1D纳米结构仍然难以实现。在此,我们展示了基于全共轭嵌段共聚物(BCP)的D-A半导体纳米带的首个实例,该纳米带通过活性结晶驱动自组装(CDSA)以高效的程序制备,具有可控的宽度和长度。最初,采用铃木-宫浦催化剂转移聚合成功合成了包含两种受体壳作为第一嵌段的BCP,随后是作为第二嵌段的供体聚(3-丙基噻吩)核。核的有限溶解性和高结晶度在聚合过程中诱导BCP发生聚合诱导结晶驱动自组装(PI-CDSA)形成纳米带,其宽度(7.6-39.6 nm)可根据聚合物主链的长度进行调节。令人惊讶的是,通过简单沉淀纯化合成的BCP直接产生了短而均匀的种子结构,通过消除初始老化的耗时过程并分解为传统CDSA所需的种子,大大缩短了整个流程。通过这种新的高效方法,我们在169至2210 nm的宽范围内实现了长度控制,精度很高(/ < 1.20)。此外,将两种不同D-A型BCP的自种子生长和种子生长相结合,能够从纳米带的两端进行连续的活性外延生长,从而得到长度可控的B-A-B三嵌段D-A半导体共聚物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验