Scanga Randall A, Shahrokhinia Ali, Borges Jake, Sarault Sean H, Ross Michael B, Reuther James F
Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States.
J Am Chem Soc. 2023 Mar 22;145(11):6319-6329. doi: 10.1021/jacs.2c13354. Epub 2023 Mar 13.
Polymerization-induced crystallization-driven self-assembly (PI-CDSA) is combined, for the first time, with helical, rod-coil block copolymer (BCP) self-assembly to enable scalable and controllable synthesis of chiral nanostructures of variable shape, size, and dimensionality. Herein, we report newly developed PI-CDSA (PI-CDSA) methodologies in the synthesis and self-assembly of chiral, rod-coil BCPs composed of poly(aryl isocyanide) (PAIC) rigid-rod and poly(ethylene glycol) (PEG) random-coil components. Using PEG-based nickel(II) macroinitiators, the construction of PAIC-BCP nanostructures with variable chiral morphologies is accomplished at solids contents ranging 5.0-10 wt %. At low core-to-corona ratios for PAIC-BCPs, we demonstrate the scalable formation of chiral one-dimensional (1D) nanofibers via "living" PI-CDSA whose contour lengths can be tuned through alterations to unimer-to-1D seed particle ratio. At high core-to-corona ratios, PI-CDSA was implemented for the rapid fabrication of molecularly thin, uniform hexagonal nanosheets via spontaneous nucleation and growth aided by vortex agitation. Investigations into 2D seeded, living PI-CDSA revealed a brand-new paradigm in the context of CDSA where hierarchically chiral, helical spirangle morphologies (i.e., hexagonal helicoids) are size-tuned in three dimensions (i.e., heights and areas) via alterations to unimer-to-seed ratio. These unique nanostructures are formed at scalable solids contents up to 10 wt % via rapid crystallization about screw dislocation defect sites in an enantioselective fashion. The liquid crystalline nature of PAIC blocks dictates the hierarchical assembly of these BCPs, with chirality translated across length scales and in multiple dimensions affording large amplifications in chiroptical activity with -factors reaching -0.030 for spirangle nanostructures.
聚合诱导结晶驱动的自组装(PI-CDSA)首次与螺旋状、棒-线圈嵌段共聚物(BCP)自组装相结合,以实现可扩展且可控地合成形状、尺寸和维度可变的手性纳米结构。在此,我们报告了新开发的PI-CDSA方法,用于由聚(芳基异氰化物)(PAIC)刚性棒和聚(乙二醇)(PEG)无规线圈组分组成的手性棒-线圈BCP的合成与自组装。使用基于PEG的镍(II)大分子引发剂,在5.0 - 10 wt%的固体含量范围内完成了具有可变手性形态的PAIC-BCP纳米结构的构建。对于PAIC-BCPs,在低核-冠比时,我们展示了通过“活性”PI-CDSA可扩展地形成手性一维(1D)纳米纤维,其轮廓长度可通过改变单体与1D种子颗粒的比例进行调节。在高核-冠比时,通过涡旋搅拌辅助的自发成核和生长,利用PI-CDSA快速制备了分子级薄的均匀六边形纳米片。对二维种子活性PI-CDSA的研究揭示了CDSA背景下的一种全新模式,即通过改变单体与种子的比例在三维(即高度和面积)上对分级手性螺旋角形态(即六边形螺旋体)进行尺寸调节。这些独特的纳米结构通过在对映选择性方式下围绕螺旋位错缺陷位点的快速结晶,在高达10 wt%的可扩展固体含量下形成。PAIC嵌段的液晶性质决定了这些BCP的分级组装,手性在多个长度尺度上传递,在多个维度上实现了手性光学活性的大幅放大,螺旋角纳米结构的g因子达到 - 0.030。