Suppr超能文献

预测跨多种屏障的肽通透性:系统研究。

Predicting Peptide Permeability Across Diverse Barriers: A Systematic Investigation.

机构信息

Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410083, China.

Institute of Chinese Medical Sciences (ICMS), State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau 999078, China.

出版信息

Mol Pharm. 2024 Aug 5;21(8):4116-4127. doi: 10.1021/acs.molpharmaceut.4c00478. Epub 2024 Jul 20.

Abstract

Peptide-based therapeutics hold immense promise for the treatment of various diseases. However, their effectiveness is often hampered by poor cell membrane permeability, hindering targeted intracellular delivery and oral drug development. This study addressed this challenge by introducing a novel graph neural network (GNN) framework and advanced machine learning algorithms to build predictive models for peptide permeability. Our models offer systematic evaluation across diverse peptides (natural, modified, linear and cyclic) and cell lines [Caco-2, Ralph Russ canine kidney (RRCK) and parallel artificial membrane permeability assay (PAMPA)]. The predictive models for linear and cyclic peptides in Caco-2 and RRCK cell lines were constructed for the first time, with an impressive coefficient of determination () of 0.708, 0.484, 0.553, and 0.528 in the test set, respectively. Notably, the GNN framework behaved better in permeability prediction with larger data sets and improved the accuracy of cyclic peptide prediction in the PAMPA cell line. The increased by about 0.32 compared with the reported models. Furthermore, the important molecular structural features that contribute to good permeability were interpreted; the influence of cell lines, peptide modification, and cyclization on permeability were successfully revealed. To facilitate broader use, we deployed these models on the user-friendly KNIME platform (https://github.com/ifyoungnet/PharmPapp). This work provides a rapid and reliable strategy for systematically assessing peptide permeability, aiding researchers in drug delivery optimization, peptide preselection during drug discovery, and potentially the design of targeted peptide-based materials.

摘要

基于肽的疗法在治疗各种疾病方面具有巨大的潜力。然而,它们的有效性常常受到细胞膜通透性差的限制,阻碍了靶向细胞内递药和口服药物的开发。本研究通过引入一种新的图神经网络(GNN)框架和先进的机器学习算法,来构建用于预测肽通透性的预测模型,从而解决了这一挑战。我们的模型对不同的肽(天然肽、修饰肽、线性肽和环状肽)和细胞系(Caco-2、Ralph Russ 犬肾(RRCK)和平行人工膜渗透性测定法(PAMPA))进行了系统评估。首次构建了 Caco-2 和 RRCK 细胞系中线性和环状肽的预测模型,在测试集中的决定系数()分别为 0.708、0.484、0.553 和 0.528。值得注意的是,GNN 框架在具有更大数据集的渗透性预测中表现更好,并提高了 PAMPA 细胞系中环状肽预测的准确性。与已报道的模型相比, 提高了约 0.32。此外,还解释了有助于良好通透性的重要分子结构特征;成功揭示了细胞系、肽修饰和环化对通透性的影响。为了便于更广泛的使用,我们将这些模型部署到了用户友好的 KNIME 平台(https://github.com/ifyoungnet/PharmPapp)上。这项工作为系统评估肽通透性提供了一种快速可靠的策略,有助于研究人员优化药物递药、在药物发现过程中对肽进行预选,并可能有助于设计靶向肽基材料。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验