Suppr超能文献

MuCoCP:基于先验化学知识的多模态对比学习预训练神经网络,用于预测环状肽的膜穿透能力。

MuCoCP: a priori chemical knowledge-based multimodal contrastive learning pre-trained neural network for the prediction of cyclic peptide membrane penetration ability.

机构信息

School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China.

The Second Hospital Clinical Medical School, Lanzhou University, Lanzhou, 730000, China.

出版信息

Bioinformatics. 2024 Aug 2;40(8). doi: 10.1093/bioinformatics/btae473.

Abstract

MOTIVATION

There has been a burgeoning interest in cyclic peptide therapeutics due to their various outstanding advantages and strong potential for drug formation. However, it is undoubtedly costly and inefficient to use traditional wet lab methods to clarify their biological activities. Using artificial intelligence instead is a more energy-efficient and faster approach. MuCoCP aims to build a complete pre-trained model for extracting potential features of cyclic peptides, which can be fine-tuned to accurately predict cyclic peptide bioactivity on various downstream tasks. To maximize its effectiveness, we use a novel data augmentation method based on a priori chemical knowledge and multiple unsupervised training objective functions to greatly improve the information-grabbing ability of the model.

RESULTS

To assay the efficacy of the model, we conducted validation on the membrane-permeability of cyclic peptides which achieved an accuracy of 0.87 and R-squared of 0.503 on CycPeptMPDB using semi-supervised training and obtained an accuracy of 0.84 and R-squared of 0.384 using a model with frozen parameters on an external dataset. This result has achieved state-of-the-art, which substantiates the stability and generalization capability of MuCoCP. It means that MuCoCP can fully explore the high-dimensional information of cyclic peptides and make accurate predictions on downstream bioactivity tasks, which will serve as a guide for the future de novo design of cyclic peptide drugs and promote the development of cyclic peptide drugs.

AVAILABILITY AND IMPLEMENTATION

All code used in our proposed method can be found at https://github.com/lennonyu11234/MuCoCP.

摘要

动机

由于环状肽具有各种突出的优势和很强的成药性潜力,因此人们对环状肽治疗药物的兴趣日益浓厚。然而,使用传统的湿实验室方法来阐明它们的生物活性无疑是昂贵且低效的。使用人工智能则是一种更节能、更快的方法。MuCoCP 旨在构建一个完整的预训练模型,用于提取环状肽的潜在特征,该模型可以经过微调,以准确预测各种下游任务中的环状肽生物活性。为了最大限度地提高其效果,我们使用了一种新颖的数据增强方法,该方法基于先验化学知识和多个无监督训练目标函数,极大地提高了模型的信息获取能力。

结果

为了评估模型的效果,我们对环状肽的膜通透性进行了验证,在使用半监督训练的情况下,在 CycPeptMPDB 上的准确率为 0.87,R-squared 为 0.503,在使用外部数据集冻结参数的模型上的准确率为 0.84,R-squared 为 0.384。这一结果达到了目前的最佳水平,证明了 MuCoCP 的稳定性和泛化能力。这意味着 MuCoCP 可以充分挖掘环状肽的高维信息,并对下游生物活性任务进行准确预测,这将为环状肽药物的从头设计提供指导,并推动环状肽药物的发展。

可用性和实现

我们提出的方法中使用的所有代码都可以在 https://github.com/lennonyu11234/MuCoCP 上找到。

相似文献

2
Predicting Peptide Permeability Across Diverse Barriers: A Systematic Investigation.预测跨多种屏障的肽通透性:系统研究。
Mol Pharm. 2024 Aug 5;21(8):4116-4127. doi: 10.1021/acs.molpharmaceut.4c00478. Epub 2024 Jul 20.

本文引用的文献

6
Accurate de novo design of membrane-traversing macrocycles.从头精准设计穿膜大环分子。
Cell. 2022 Sep 15;185(19):3520-3532.e26. doi: 10.1016/j.cell.2022.07.019. Epub 2022 Aug 29.
7
Cyclic Peptides for the Treatment of Cancers: A Review.环状肽类药物治疗癌症的研究进展
Molecules. 2022 Jul 11;27(14):4428. doi: 10.3390/molecules27144428.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验