Suppr超能文献

肽感知化学语言模型成功预测环肽的膜扩散。

Peptide-aware chemical language model successfully predicts membrane diffusion of cyclic peptides.

作者信息

Feller Aaron L, Wilke Claus O

机构信息

Interdisciplinary Life Sciences, The University of Texas at Austin, Austin, Texas, USA 78712.

Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA 78712.

出版信息

bioRxiv. 2024 Nov 21:2024.08.09.607221. doi: 10.1101/2024.08.09.607221.

Abstract

Language modeling applied to biological data has significantly advanced the prediction of membrane penetration for small molecule drugs and natural peptides. However, accurately predicting membrane diffusion for peptides with pharmacologically relevant modifications remains a substantial challenge. Here, we introduce PeptideCLM, a peptide-focused chemical language model capable of encoding peptides with chemical modifications, unnatural or non-canonical amino acids, and cyclizations. We assess this model by predicting membrane diffusion of cyclic peptides, demonstrating greater predictive power than existing chemical language models. Our model is versatile and can be extended beyond membrane diffusion predictions to other target values. Its advantages include the ability to model macromolecules using chemical string notation, a largely unexplored domain, and a simple, flexible architecture that allows for adaptation to any peptide or other macromolecule dataset.

摘要

应用于生物数据的语言建模显著推动了小分子药物和天然肽的膜穿透预测。然而,准确预测具有药理学相关修饰的肽的膜扩散仍然是一项重大挑战。在此,我们引入了PeptideCLM,这是一种专注于肽的化学语言模型,能够对具有化学修饰、非天然或非规范氨基酸以及环化的肽进行编码。我们通过预测环肽的膜扩散来评估该模型,结果表明它比现有的化学语言模型具有更强的预测能力。我们的模型具有通用性,可扩展到膜扩散预测之外的其他目标值。其优势包括能够使用化学字符串表示法对大分子进行建模(这是一个很大程度上未被探索的领域),以及一种简单、灵活的架构,允许其适应任何肽或其他大分子数据集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5f6/11589893/038f9518a53c/nihpp-2024.08.09.607221v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验