School of Computer Science and Technology, Xi'an University of Posts and Telecommunications, Xi'an, Shaanxi, 710121, China.
Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing, Xi'an University of Posts and Telecommunications, Xi'an, Shaanxi, 710121, China.
Med Biol Eng Comput. 2024 Dec;62(12):3801-3814. doi: 10.1007/s11517-024-03166-0. Epub 2024 Jul 20.
Precise segmentation of breast tumors from MRI is crucial for breast cancer diagnosis, as it allows for detailed calculation of tumor characteristics such as shape, size, and edges. Current segmentation methodologies face significant challenges in accurately modeling the complex interrelationships inherent in multi-sequence MRI data. This paper presents a hybrid deep network framework with three interconnected modules, aimed at efficiently integrating and exploiting the spatial-temporal features among multiple MRI sequences for breast tumor segmentation. The first module involves an advanced multi-sequence encoder with a densely connected architecture, separating the encoding pathway into multiple streams for individual MRI sequences. To harness the intricate correlations between different sequence features, we propose a sequence-awareness and temporal-awareness method that adeptly fuses spatial-temporal features of MRI in the second multi-scale feature embedding module. Finally, the decoder module engages in the upsampling of feature maps, meticulously refining the resolution to achieve highly precise segmentation of breast tumors. In contrast to other popular methods, the proposed method learns the interrelationships inherent in multi-sequence MRI. We justify the proposed method through extensive experiments. It achieves notable improvements in segmentation performance, with Dice Similarity Coefficient (DSC), Intersection over Union (IoU), and Positive Predictive Value (PPV) scores of 80.57%, 74.08%, and 84.74% respectively.
精准分割 MRI 中的乳腺肿瘤对于乳腺癌诊断至关重要,因为它可以详细计算肿瘤的特征,如形状、大小和边缘。目前的分割方法在准确建模多序列 MRI 数据中固有的复杂相互关系方面面临重大挑战。本文提出了一种具有三个互联模块的混合深度网络框架,旨在有效地整合和利用多序列 MRI 之间的时空特征,用于乳腺肿瘤分割。第一个模块涉及具有密集连接架构的高级多序列编码器,将编码路径分为多个流,用于各个 MRI 序列。为了利用不同序列特征之间的复杂相关性,我们提出了一种序列感知和时间感知方法,该方法巧妙地融合了多尺度特征嵌入模块中的 MRI 时空特征。最后,解码器模块进行特征图上采样,精细地提高分辨率,以实现乳腺肿瘤的高度精确分割。与其他流行方法不同,所提出的方法学习多序列 MRI 中的内在关系。我们通过广泛的实验证明了所提出的方法的合理性。它在分割性能方面取得了显著的改进,Dice 相似系数(DSC)、交并比(IoU)和阳性预测值(PPV)的得分分别为 80.57%、74.08%和 84.74%。