Suppr超能文献

基于强化学习的胰腺亚区和导管分割解剖图谱。

Reinforcement learning-based anatomical maps for pancreas subregion and duct segmentation.

机构信息

Department of Computer Science, University of Copenhagen, Copenhagen, Denmark.

Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia.

出版信息

Med Phys. 2024 Oct;51(10):7378-7392. doi: 10.1002/mp.17300. Epub 2024 Jul 19.

Abstract

BACKGROUND

The pancreas is a complex abdominal organ with many anatomical variations, and therefore automated pancreas segmentation from medical images is a challenging application.

PURPOSE

In this paper, we present a framework for segmenting individual pancreatic subregions and the pancreatic duct from three-dimensional (3D) computed tomography (CT) images.

METHODS

A multiagent reinforcement learning (RL) network was used to detect landmarks of the head, neck, body, and tail of the pancreas, and landmarks along the pancreatic duct in a selected target CT image. Using the landmark detection results, an atlas of pancreases was nonrigidly registered to the target image, resulting in anatomical probability maps for the pancreatic subregions and duct. The probability maps were augmented with multilabel 3D U-Net architectures to obtain the final segmentation results.

RESULTS

To evaluate the performance of our proposed framework, we computed the Dice similarity coefficient (DSC) between the predicted and ground truth manual segmentations on a database of 82 CT images with manually segmented pancreatic subregions and 37 CT images with manually segmented pancreatic ducts. For the four pancreatic subregions, the mean DSC improved from 0.38, 0.44, and 0.39 with standard 3D U-Net, Attention U-Net, and shifted windowing (Swin) U-Net architectures, to 0.51, 0.47, and 0.49, respectively, when utilizing the proposed RL-based framework. For the pancreatic duct, the RL-based framework achieved a mean DSC of 0.70, significantly outperforming the standard approaches and existing methods on different datasets.

CONCLUSIONS

The resulting accuracy of the proposed RL-based segmentation framework demonstrates an improvement against segmentation with standard U-Net architectures.

摘要

背景

胰腺是一个具有许多解剖学变异的复杂腹部器官,因此从医学图像中自动分割胰腺是一项具有挑战性的应用。

目的

在本文中,我们提出了一种从三维(3D)计算机断层扫描(CT)图像分割个体胰腺亚区和胰管的框架。

方法

使用多代理强化学习(RL)网络检测选定目标 CT 图像中胰腺头部、颈部、体部和尾部以及胰管的标志点。利用标志点检测结果,将胰腺图谱非刚性地配准到目标图像上,得到胰腺亚区和胰管的解剖概率图。概率图通过多标签 3D U-Net 架构进行扩充,以获得最终的分割结果。

结果

为了评估我们提出的框架的性能,我们在一个包含 82 张手动分割胰腺亚区的 CT 图像和 37 张手动分割胰管的 CT 图像的数据库上计算了预测值与手动分割之间的 Dice 相似系数(DSC)。对于四个胰腺亚区,使用标准 3D U-Net、注意力 U-Net 和移位窗口(Swin)U-Net 架构时,DSC 均值分别从 0.38、0.44 和 0.39 提高到 0.51、0.47 和 0.49,而使用基于 RL 的框架时,分别提高到 0.51、0.47 和 0.49。对于胰管,基于 RL 的框架的 DSC 均值为 0.70,明显优于不同数据集上的标准方法和现有方法。

结论

所提出的基于 RL 的分割框架的准确性表明,与标准 U-Net 架构相比,分割精度有所提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验