School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China.
School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China.
Water Res. 2024 Sep 15;262:122113. doi: 10.1016/j.watres.2024.122113. Epub 2024 Jul 19.
Mangrove aquatic ecosystems receive substantial nitrogen (N) inputs from both land and sea, playing critical roles in modulating coastal N fluxes. The microbially-mediated competition between denitrification and dissimilatory nitrate reduction to ammonium (DNRA) in mangrove sediments significantly impacts the N fate and transformation processes. Despite their recognized role in N loss or retention in surface sediments, how these two processes vary with sediment depths and their influential factors remain elusive. Here, we employed a comprehensive approach combining N isotope tracer, quantitative PCR (qPCR) and metagenomics to verify the vertical dynamics of denitrification and DNRA across five 100-cm mangrove sediment cores. Our results revealed a clear vertical partitioning, with denitrification dominated in 0-30 cm sediments, while DNRA played a greater role with increasing depths. Quantification of denitrification and DNRA functional genes further explained this phenomenon. Taxonomic analysis identified Pseudomonadota as the primary denitrification group, while Planctomycetota and Pseudomonadota exhibited high proportion in DNRA group. Furthermore, genome-resolved metagenomics revealed multiple salt-tolerance strategies and aromatic compound utilization potential in denitrification assemblages. This allowed denitrification to dominate in oxygen-fluctuating and higher-salinity surface sediments. However, the elevated C/N in anaerobic deep sediments favored DNRA, tending to generate biologically available NH. Together, our results uncover the depth-related variations in the microbially-mediated competition between denitrification and DNRA, regulating N dynamics in mangrove ecosystems.
红树林水生生态系统从陆地和海洋接收大量氮 (N) 输入,在调节沿海 N 通量方面发挥着关键作用。红树林沉积物中反硝化作用和异化硝酸盐还原为铵(DNRA)之间的微生物介导竞争对 N 的命运和转化过程有重大影响。尽管它们在表面沉积物中的 N 损失或保留中具有公认的作用,但这两个过程如何随沉积物深度变化及其影响因素仍不清楚。在这里,我们采用了一种综合方法,结合氮同位素示踪、定量 PCR (qPCR) 和宏基因组学,验证了五个 100 厘米红树林沉积物芯中反硝化和 DNRA 的垂直动态。我们的结果显示出明显的垂直分区,反硝化作用在 0-30 厘米的沉积物中占主导地位,而随着深度的增加,DNRA 发挥了更大的作用。反硝化和 DNRA 功能基因的定量进一步解释了这一现象。分类分析确定了假单胞菌门为主要的反硝化菌群,而浮霉菌门和假单胞菌门在 DNRA 菌门中表现出较高的比例。此外,基因组解析宏基因组学揭示了反硝化菌群中多种耐盐策略和芳香族化合物利用潜力。这使得反硝化作用在氧气波动和高盐度的表层沉积物中占主导地位。然而,厌氧深层沉积物中升高的 C/N 有利于 DNRA,倾向于产生生物可利用的 NH。总的来说,我们的研究结果揭示了反硝化和 DNRA 之间微生物介导竞争的深度相关变化,调节了红树林生态系统中的 N 动态。