Suppr超能文献

添加硫化物有利于呼吸氨化作用(DNRA)而不是完全反硝化,并改变盐沼沉积物中的活性微生物群落。

Sulphide addition favours respiratory ammonification (DNRA) over complete denitrification and alters the active microbial community in salt marsh sediments.

机构信息

Department of Marine and Environmental Sciences, Marine Science Center, Northeastern University, Nahant, Massachusetts, 01908, USA.

INSPIRE Environmental, Inc, 513 Broadway Suite 314, Newport, Rhode Island, 02840, USA.

出版信息

Environ Microbiol. 2020 Jun;22(6):2124-2139. doi: 10.1111/1462-2920.14969. Epub 2020 Mar 13.

Abstract

The balance between nitrate respiration pathways, denitrification and dissimilatory nitrate (NO ) reduction to ammonium (DNRA), determines whether bioavailable nitrogen is removed as N gas or recycled as ammonium. Saltwater intrusion and organic matter enrichment may increase sulphate reduction leading to sulphide accumulation. We investigated the effects of sulphide on the partitioning of NO between complete denitrification and DNRA and the microbial communities in salt marsh sediments. Complete denitrification significantly decreased with increasing sulphide, resulting in an increase in the contribution of DNRA to NO respiration. Alternative fates of NO became increasingly important at higher sulphide treatments, which could include N O production and/or transport into intracellular vacuoles. Higher 16S transcript diversity was observed in the high sulphide treatment, with clear shifts in composition. Generally, low and no sulphide, coupled with high NO , favoured the activity of Campylobacterales, Oceanospirillales and Altermonadales, all of which include opportunistic denitrifiers. High ∑sulphide conditions promoted the activity of potential sulphide oxidizing nitrate reducers (Desulfobulbaceae, Acidiferrobacteraceae and Xanthomonadales) and sulphate reducers (Desulfomonadaceae, Desulfobacteraceae). Our study highlights the tight coupling between N and S cycling, and the implications of these dynamics on the fate of bioavailable N in coastal environments susceptible to intermittent saltwater inundation and organic matter enrichment.

摘要

硝酸盐呼吸途径、反硝化和异化硝酸盐(NO3-)还原为铵(DNRA)之间的平衡决定了生物可利用氮是作为 N 气体去除还是作为铵回收。海水入侵和有机质富集会增加硫酸盐还原作用,导致硫化物积累。我们研究了硫化物对盐沼沉积物中完全反硝化和 DNRA 过程中 NO3-分配的影响以及微生物群落的影响。随着硫化物的增加,完全反硝化作用显著下降,导致 DNRA 对 NO3-呼吸的贡献增加。在较高的硫化物处理中,NO3-的替代命运变得越来越重要,包括 N2O 的产生和/或向细胞内空泡的运输。在高硫化物处理中观察到 16S 转录多样性更高,组成明显变化。一般来说,低硫化物和无硫化物,加上高 NO3-,有利于 Campylobacterales、Oceanospirillales 和 Alteromonadales 的活性,这些菌科都包括机会性脱氮菌。高∑硫化物条件促进了潜在的硫化物氧化硝酸盐还原菌(脱硫杆菌科、酸亚铁菌科和黄单胞菌科)和硫酸盐还原菌(脱硫单胞菌科、脱硫杆菌科)的活性。我们的研究强调了 N 和 S 循环之间的紧密耦合,以及这些动态对易受间歇性海水入侵和有机质富积影响的沿海环境中生物可利用氮命运的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验