Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN, USA; Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN, USA.
Neuroimage. 2024 Aug 15;297:120734. doi: 10.1016/j.neuroimage.2024.120734. Epub 2024 Jul 20.
Brain development is a highly complex process regulated by numerous genes at the molecular and cellular levels. Brain tissue exhibits serial microstructural changes during the development process. High-resolution diffusion magnetic resonance imaging (dMRI) affords a unique opportunity to probe these changes in the developing brain non-destructively. In this study, we acquired multi-shell dMRI datasets at 32 µm isotropic resolution to investigate the tissue microstructure alterations, which we believe to be the highest spatial resolution dMRI datasets obtained for postnatal mouse brains. We adapted the Allen Developing Mouse Brain Atlas (ADMBA) to integrate quantitative MRI metrics and spatial transcriptomics. Diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), and neurite orientation dispersion and density imaging (NODDI) metrics were used to quantify brain development at different postnatal days. We demonstrated that the differential evolutions of fiber orientation distributions contribute to the distinct development patterns in white matter (WM) and gray matter (GM). Furthermore, the genes enriched in the nervous system that regulate brain structure and function were expressed in spatial correlation with age-matched dMRI. This study is the first one providing high-resolution dMRI, including DTI, DKI, and NODDI models, to trace mouse brain microstructural changes in WM and GM during postnatal development. This study also highlighted the genotype-phenotype correlation of spatial transcriptomics and dMRI, which may improve our understanding of brain microstructure changes at the molecular level.
大脑发育是一个高度复杂的过程,受到分子和细胞水平上众多基因的调控。脑组织在发育过程中表现出一系列的微观结构变化。高分辨率扩散磁共振成像(dMRI)为非破坏性地探测发育中大脑的这些变化提供了一个独特的机会。在这项研究中,我们获得了具有 32 µm 各向同性分辨率的多壳层 dMRI 数据集,以研究组织微观结构的改变,我们认为这是为产后小鼠大脑获得的最高空间分辨率 dMRI 数据集。我们采用了 Allen 发育小鼠脑图谱(ADMBA)来整合定量 MRI 指标和空间转录组学。弥散张量成像(DTI)、扩散峰度成像(DKI)和神经丝取向分散和密度成像(NODDI)指标用于量化不同出生后天数的大脑发育。我们证明了纤维方向分布的差异演化有助于白质(WM)和灰质(GM)的不同发育模式。此外,调节大脑结构和功能的神经系统中富集的基因与年龄匹配的 dMRI 具有空间相关性表达。这项研究首次提供了高分辨率的 dMRI,包括 DTI、DKI 和 NODDI 模型,以追踪产后发育过程中 WM 和 GM 中小鼠大脑的微观结构变化。这项研究还强调了空间转录组学和 dMRI 的基因型-表型相关性,这可能有助于我们从分子水平上理解大脑微观结构的变化。