Suppr超能文献

计算机视觉与病理学的进展:人工智能在精准诊断及其他领域的应用潜力正在被揭开。

Advancements in computer vision and pathology: Unraveling the potential of artificial intelligence for precision diagnosis and beyond.

机构信息

Virginia Commonwealth University Health System, Richmond, VA, United States.

Virginia Commonwealth University Health System, Richmond, VA, United States.

出版信息

Adv Cancer Res. 2024;161:431-478. doi: 10.1016/bs.acr.2024.05.006. Epub 2024 Jun 26.

Abstract

The integration of computer vision into pathology through slide digitalization represents a transformative leap in the field's evolution. Traditional pathology methods, while reliable, are often time-consuming and susceptible to intra- and interobserver variability. In contrast, computer vision, empowered by artificial intelligence (AI) and machine learning (ML), promises revolutionary changes, offering consistent, reproducible, and objective results with ever-increasing speed and scalability. The applications of advanced algorithms and deep learning architectures like CNNs and U-Nets augment pathologists' diagnostic capabilities, opening new frontiers in automated image analysis. As these technologies mature and integrate into digital pathology workflows, they are poised to provide deeper insights into disease processes, quantify and standardize biomarkers, enhance patient outcomes, and automate routine tasks, reducing pathologists' workload. However, this transformative force calls for cross-disciplinary collaboration between pathologists, computer scientists, and industry innovators to drive research and development. While acknowledging its potential, this chapter addresses the limitations of AI in pathology, encompassing technical, practical, and ethical considerations during development and implementation.

摘要

通过幻灯片数字化将计算机视觉融入病理学代表了该领域发展的变革性飞跃。传统的病理学方法虽然可靠,但往往耗时且容易受到观察者内和观察者间的变异性的影响。相比之下,计算机视觉借助人工智能 (AI) 和机器学习 (ML),有望带来革命性的变化,提供一致、可重复和客观的结果,同时速度和可扩展性不断提高。先进算法和深度学习架构(如 CNN 和 U-Nets)的应用增强了病理学家的诊断能力,为自动化图像分析开辟了新的领域。随着这些技术的成熟并融入数字病理学工作流程,它们有望更深入地了解疾病过程,量化和标准化生物标志物,改善患者的预后,并实现自动化常规任务,减轻病理学家的工作量。然而,这种变革性力量需要病理学家、计算机科学家和行业创新者之间进行跨学科合作,推动研究和开发。虽然认识到其潜力,但本章还讨论了 AI 在病理学中的局限性,包括在开发和实施过程中的技术、实际和伦理考虑因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验