Suppr超能文献

人工智能在数字病理中的应用:预测乳腺癌患者的预后和治疗效果。

Artificial intelligence in digital histopathology for predicting patient prognosis and treatment efficacy in breast cancer.

机构信息

UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland.

UCD School of Medicine, UCD Conway Institute, University College Dublin, Dublin, Ireland.

出版信息

Expert Rev Mol Diagn. 2024 May;24(5):363-377. doi: 10.1080/14737159.2024.2346545. Epub 2024 May 9.

Abstract

INTRODUCTION

Histological images contain phenotypic information predictive of patient outcomes. Due to the heavy workload of pathologists, the time-consuming nature of quantitatively assessing histological features, and human eye limitations to recognize spatial patterns, manually extracting prognostic information in routine pathological workflows remains challenging. Digital pathology has facilitated the mining and quantification of these features utilizing whole-slide image (WSI) scanners and artificial intelligence (AI) algorithms. AI algorithms to identify image-based biomarkers from the tumor microenvironment (TME) have the potential to revolutionize the field of oncology, reducing delays between diagnosis and prognosis determination, allowing for rapid stratification of patients and prescription of optimal treatment regimes, thereby improving patient outcomes.

AREAS COVERED

In this review, the authors discuss how AI algorithms and digital pathology can predict breast cancer patient prognosis and treatment outcomes using image-based biomarkers, along with the challenges of adopting this technology in clinical settings.

EXPERT OPINION

The integration of AI and digital pathology presents significant potential for analyzing the TME and its diagnostic, prognostic, and predictive value in breast cancer patients. Widespread clinical adoption of AI faces ethical, regulatory, and technical challenges, although prospective trials may offer reassurance and promote uptake, ultimately improving patient outcomes by reducing diagnosis-to-prognosis delivery delays.

摘要

简介

组织学图像包含可预测患者预后的表型信息。由于病理学家的工作量大、定量评估组织学特征的耗时性质以及人眼识别空间模式的局限性,因此在常规病理工作流程中手动提取预后信息仍然具有挑战性。数字病理学利用全切片图像 (WSI) 扫描仪和人工智能 (AI) 算法促进了这些特征的挖掘和量化。用于从肿瘤微环境 (TME) 中识别基于图像的生物标志物的 AI 算法有可能彻底改变肿瘤学领域,减少诊断和预后确定之间的延迟,实现患者的快速分层和最佳治疗方案的处方,从而改善患者的预后。

涵盖领域

在这篇综述中,作者讨论了如何使用基于图像的生物标志物,通过 AI 算法和数字病理学来预测乳腺癌患者的预后和治疗结果,以及在临床环境中采用该技术所面临的挑战。

专家意见

AI 和数字病理学的整合为分析 TME 及其在乳腺癌患者中的诊断、预后和预测价值提供了巨大的潜力。尽管前瞻性试验可能会提供保证并促进采用,但 AI 的广泛临床应用面临着伦理、监管和技术挑战,最终通过减少从诊断到预后的交付延迟来改善患者的预后。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验