Suppr超能文献

生物入侵在非均匀空间中的多孔介质型扩散。

Biological invasion with a porous medium type diffusion in a heterogeneous space.

机构信息

Meiji Institute for Advanced Study of Mathematical Sciences, Meiji University, Nakano, Nakano-ku, Tokyo, 164-8525, Japan.

Department of Mathematical Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea.

出版信息

J Math Biol. 2024 Jul 21;89(3):31. doi: 10.1007/s00285-024-02124-6.

Abstract

The knowledge of traveling wave solutions is the main tool in the study of wave propagation. However, in a spatially heterogeneous environment, traveling wave solutions do not exist, and a different approach is needed. In this paper, we study the generation and the propagation of hyperbolic scale singular limits of a KPP-type reaction-diffusion equation when the carrying capacity is spatially heterogeneous and the diffusion is of a porous medium equation type. We show that the interface propagation speed varies according to the carrying capacity.

摘要

行波解的知识是研究波传播的主要工具。然而,在空间不均匀的环境中,行波解并不存在,需要采用不同的方法。本文研究了在承载能力空间不均匀且扩散为多孔介质方程类型时,KPP 型反应扩散方程的双曲尺度奇异极限的产生和传播。我们表明,界面传播速度随承载能力而变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72e7/11271382/bb31696b1df0/285_2024_2124_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验