Suppr超能文献

细菌行波现象的非线性扩散。

Nonlinear Diffusion for Bacterial Traveling Wave Phenomenon.

机构信息

Department of Mathematical Sciences, KAIST, Daejeon, 34141, Republic of Korea.

Meiji Institute for Advanced Study of Mathematical Sciences, Meiji University, 4-21-1 Nakano, Nakano ku, Tokyo, 164-8525, Japan.

出版信息

Bull Math Biol. 2023 Mar 27;85(5):35. doi: 10.1007/s11538-023-01138-3.

Abstract

The bacterial traveling waves observed in experiments are of pulse type which is different from the monotone traveling waves of the Fisher-KPP equation. For this reason, the Keller-Segel equations are widely used for bacterial waves. Note that the Keller-Segel equations do not contain the population dynamics of bacteria, but the population of bacteria multiplies and plays a crucial role in wave propagation. In this paper, we consider the singular limits of a linear system with active and inactive cells together with bacterial population dynamics. Eventually, we see that if there are no chemotactic dynamics in the system, we only obtain a monotone traveling wave. This is evidence that chemotaxis dynamics are needed even if population growth is included in the system.

摘要

在实验中观察到的细菌传播波是脉冲类型的,与 Fisher-KPP 方程的单调传播波不同。出于这个原因,Keller-Segel 方程被广泛应用于细菌波的研究。需要注意的是,Keller-Segel 方程并不包含细菌的种群动态,但细菌的种群会繁殖,并且在波的传播中起着至关重要的作用。在本文中,我们考虑了一个带有活跃和不活跃细胞的线性系统的奇异极限,以及细菌的种群动态。最终,我们发现如果系统中没有趋化动力学,我们只能得到一个单调的传播波。这表明即使在系统中包含种群增长,也需要趋化动力学。

相似文献

1
Nonlinear Diffusion for Bacterial Traveling Wave Phenomenon.
Bull Math Biol. 2023 Mar 27;85(5):35. doi: 10.1007/s11538-023-01138-3.
2
Traveling wave solutions of a singular Keller-Segel system with logistic source.
Math Biosci Eng. 2022 Jun 6;19(8):8107-8131. doi: 10.3934/mbe.2022379.
3
Can chemotaxis speed up or slow down the spatial spreading in parabolic-elliptic Keller-Segel systems with logistic source?
J Math Biol. 2019 Sep;79(4):1455-1490. doi: 10.1007/s00285-019-01400-0. Epub 2019 Jul 19.
4
Traveling waves in a chemotactic model.
J Math Biol. 1991;30(2):169-84. doi: 10.1007/BF00160334.
5
Traveling wave solutions from microscopic to macroscopic chemotaxis models.
J Math Biol. 2010 Nov;61(5):739-61. doi: 10.1007/s00285-009-0317-0.
6
Existence of Traveling Waves for the Generalized F-KPP Equation.
Bull Math Biol. 2017 Mar;79(3):525-559. doi: 10.1007/s11538-016-0244-3. Epub 2016 Dec 22.
7
Biological invasion with a porous medium type diffusion in a heterogeneous space.
J Math Biol. 2024 Jul 21;89(3):31. doi: 10.1007/s00285-024-02124-6.
8
Forced Traveling Waves in a Reaction-Diffusion Equation with Strong Allee Effect and Shifting Habitat.
Bull Math Biol. 2023 Nov 3;85(12):121. doi: 10.1007/s11538-023-01221-9.
9
Bacterial chemotaxis without gradient-sensing.
J Math Biol. 2015 May;70(6):1359-80. doi: 10.1007/s00285-014-0790-y. Epub 2014 May 28.
10
Steadily propagating waves of a chemotaxis model.
Math Biosci. 2012 Dec;240(2):161-8. doi: 10.1016/j.mbs.2012.07.003. Epub 2012 Jul 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验