Zhang Suixia, Yuan Jing, Sun Yu, Wu Fei, Liu Ziyue, Zhai Feifei, Zhang Yaoyun, Somekh Judith, Peleg Mor, Zhu Yi-Cheng, Huang Zhengxing
Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, P.R. China.
Department of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830017, China.
iScience. 2024 Jun 14;27(7):110263. doi: 10.1016/j.isci.2024.110263. eCollection 2024 Jul 19.
Alzheimer's disease (AD) is a complex pathophysiological disease. Allowing for heterogeneity, not only in disease manifestations but also in different progression patterns, is critical for developing effective disease models that can be used in clinical and research settings. We introduce a machine learning model for identifying underlying patterns in Alzheimer's disease (AD) trajectory using longitudinal multi-modal data from the ADNI cohort and the AIBL cohort. Ten biologically and clinically meaningful disease-related states were identified from data, which constitute three non-overlapping stages (i.e., neocortical atrophy [NCA], medial temporal atrophy [MTA], and whole brain atrophy [WBA]) and two distinct disease progression patterns (i.e., NCA WBA and MTA WBA). The index of disease-related states provided a remarkable performance in predicting the time to conversion to AD dementia (C-Index: 0.923 ± 0.007). Our model shows potential for promoting the understanding of heterogeneous disease progression and early predicting the conversion time to AD dementia.
阿尔茨海默病(AD)是一种复杂的病理生理疾病。考虑到其异质性,不仅在疾病表现方面,而且在不同的进展模式方面,对于开发可用于临床和研究环境的有效疾病模型至关重要。我们引入了一种机器学习模型,用于使用来自ADNI队列和AIBL队列的纵向多模态数据来识别阿尔茨海默病(AD)轨迹中的潜在模式。从数据中识别出了十个具有生物学和临床意义的与疾病相关的状态,它们构成了三个不重叠的阶段(即新皮质萎缩[NCA]、内侧颞叶萎缩[MTA]和全脑萎缩[WBA])以及两种不同的疾病进展模式(即NCA→WBA和MTA→WBA)。疾病相关状态指数在预测转化为AD痴呆的时间方面表现出色(C指数:0.923±0.007)。我们的模型显示出促进对异质性疾病进展的理解并早期预测转化为AD痴呆时间的潜力。