Suppr超能文献

关于两个变量之间因果关系中总体异质性的检测:对双胞胎对收集的数据进行有限混合建模。

On the detection of population heterogeneity in causation between two variables: Finite mixture modeling of data collected from twin pairs.

作者信息

Vinh Philip, Verhulst Brad, Dolan Conor V, Neale Michael C, Maes Hermine Hm

机构信息

Virginia Commonwealth University.

Texas A&M University.

出版信息

Res Sq. 2024 Jul 13:rs.3.rs-4576809. doi: 10.21203/rs.3.rs-4576809/v1.

Abstract

Causal inference is inherently complex, often dependent on key assumptions that are sometimes overlooked. One such assumption is the potential for unidirectional or bidirectional causality, while another is population homogeneity, which suggests that the causal direction between two variables remains consistent across the study sample. Discerning these processes requires meticulous data collection through an appropriate research design and the use of suitable software to define and fit alternative models. In psychiatry, the co-occurrence of different disorders is common and can stem from various origins. A patient diagnosed with two disorders might have one recognized as primary and the other as secondary, suggesting the existence of two types of comorbidity within the population. For example, in some individuals, depression might lead to substance use, while in others, substance use could lead to depression. Identifying the primary disorder is crucial for developing effective treatment plans. This article explores the use of finite mixture models to depict within-sample heterogeneity. We begin with the Direction of Causation (DoC) model for twin data and extend it to a mixture distribution model. This extension allows for the calculation of the likelihood of each individual's data for the two alternate causal directions. Given twin data, there are four possible pairwise combinations of causal direction. Through simulations, we investigate the Direction of Causation Twin Mixture (mixCLPM) model's potential to detect and model heterogeneity due to varying causal directions.

摘要

因果推断本质上很复杂,常常依赖于一些有时会被忽视的关键假设。其中一个假设是单向或双向因果关系的可能性,另一个是总体同质性,这意味着两个变量之间的因果方向在整个研究样本中保持一致。识别这些过程需要通过适当的研究设计进行细致的数据收集,并使用合适的软件来定义和拟合替代模型。在精神病学中,不同疾病的共现很常见,且可能源于各种原因。被诊断患有两种疾病的患者可能有一种被认定为主要疾病,另一种为次要疾病,这表明人群中存在两种类型的共病情况。例如,在一些个体中,抑郁症可能导致物质使用,而在另一些个体中,物质使用可能导致抑郁症。确定主要疾病对于制定有效的治疗方案至关重要。本文探讨了使用有限混合模型来描述样本内的异质性。我们从双胞胎数据的因果方向(DoC)模型开始,并将其扩展为混合分布模型。这种扩展允许计算每个个体的数据在两个交替因果方向上的似然性。给定双胞胎数据,因果方向有四种可能的成对组合。通过模拟,我们研究因果方向双胞胎混合(mixCLPM)模型检测和建模因因果方向不同而产生的异质性的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa61/11261959/9d34efced336/nihpp-rs4576809v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验