School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei, 230032, China.
Biomater Sci. 2024 Aug 20;12(17):4301-4334. doi: 10.1039/d4bm00674g.
Microrobots, which can perform tasks in difficult-to-reach parts of the human body under their own or external power supply, are potential tools for biomedical applications, such as drug delivery, microsurgery, imaging and monitoring, tissue engineering, and sensors and actuators. Compared with traditional fabrication methods for microrobots, recent improvements in 3D printers enable them to print high-precision microrobots, breaking through the limitations of traditional micromanufacturing technologies that require high skills for operators and greatly shortening the design-to-production cycle. Here, this review first introduces typical 3D printing technologies used in microrobot manufacturing. Then, the structures of microrobots with different functions and application scenarios are discussed. Next, we summarize the materials (body materials, propulsion materials and intelligent materials) used in 3D microrobot manufacturing to complete body construction and realize biomedical applications (, drug delivery, imaging and monitoring). Finally, the challenges and future prospects of 3D printed microrobots in biomedical applications are discussed in terms of materials, manufacturing and advancement.
微机器人可以在自身或外部电源的作用下,在人体难以到达的部位执行任务,是生物医学应用的潜在工具,如药物输送、微创手术、成像和监测、组织工程以及传感器和执行器。与传统的微机器人制造方法相比,最近 3D 打印机的改进使得它们能够打印高精度的微机器人,突破了传统微制造技术对操作人员高技能的限制,并大大缩短了设计到生产的周期。在这里,本综述首先介绍了用于微机器人制造的典型 3D 打印技术。然后,讨论了具有不同功能和应用场景的微机器人的结构。接下来,我们总结了用于 3D 微机器人制造的材料(主体材料、推进材料和智能材料),以完成主体构建并实现生物医学应用(药物输送、成像和监测)。最后,从材料、制造和进展方面讨论了 3D 打印微机器人在生物医学应用中的挑战和未来前景。