Suppr超能文献

设计、构建和验证产科风险分类系统,以预测入住重症监护病房的情况。

Design, construction, and validation of obstetric risk classification systems to predict intensive care unit admission.

机构信息

Department of Obstetrics and Gynecology, Faculty of Medical Sciences, State University of Campinas, Campinas, SP, Brazil.

Department of Applied and Computational Mathematics, Institute of Mathematics, Statistics and Scientific Computing, State University of Campinas, Campinas, SP, Brazil.

出版信息

Int J Gynaecol Obstet. 2024 Dec;167(3):1243-1254. doi: 10.1002/ijgo.15782. Epub 2024 Jul 23.

Abstract

INTRODUCTION

To develop and validate a support tool for healthcare providers, enabling them to make precise and critical decisions regarding intensive care unit (ICU) admissions for high-risk pregnant women, thus enhancing maternal outcomes.

METHODS

This retrospective study involves secondary data analysis of information gathered from 9550 pregnant women, who had severe maternal morbidity (any unexpected complication during labor and delivery that leads to substantial short-term or long-term health issues for the mother), collected between 2009 and 2010 from the Brazilian Network for Surveillance of Severe Maternal Morbidity, encompassing 27 obstetric reference centers in Brazil. Machine-learning models, including decision trees, Random Forest, Gradient Boosting Machine (GBM), and Extreme Gradient Boosting (XGBoost), were employed to create a risk prediction tool for ICU admission. Subsequently, sensitivity analysis was conducted to compare the accuracy, predictive power, sensitivity, and specificity of these models, with differences analyzed using the Wilcoxon test.

RESULTS

The XGBoost algorithm demonstrated superior efficiency, achieving an accuracy rate of 85%, sensitivity of 42%, specificity of 97%, and an area under the receiver operating characteristic curve of 86.7%. Notably, the estimated prevalence of ICU utilization by the model (11.6%) differed from the prevalence of ICU use from the study (21.52%).

CONCLUSION

The developed risk engine yielded positive results, emphasizing the need to optimize intensive care bed utilization and objectively identify high-risk pregnant women requiring these services. This approach promises to enhance the effective and efficient management of pregnant women, particularly in resource-constrained regions worldwide. By streamlining ICU admissions for high-risk cases, healthcare providers can better allocate critical resources, ultimately contributing to improved maternal health outcomes.

摘要

简介

为了帮助医疗保健提供者做出精确和关键的决策,开发并验证一个针对高危孕妇重症监护病房(ICU)收治的支持工具,从而改善母婴结局。

方法

这是一项回顾性研究,利用 2009 年至 2010 年巴西严重孕产妇发病率监测网络(涵盖巴西 27 个产科参考中心)收集的 9550 名患有严重孕产妇发病率(分娩和分娩过程中任何意外并发症导致母亲短期或长期健康问题)的孕妇的二级数据进行二次数据分析。使用决策树、随机森林、梯度提升机(GBM)和极端梯度提升(XGBoost)等机器学习模型创建 ICU 入院风险预测工具。随后进行敏感性分析,比较这些模型的准确性、预测能力、敏感性和特异性,使用 Wilcoxon 检验分析差异。

结果

XGBoost 算法效率最高,准确率为 85%,敏感性为 42%,特异性为 97%,受试者工作特征曲线下面积为 86.7%。值得注意的是,模型估计的 ICU 使用概率(11.6%)与研究中的 ICU 使用概率(21.52%)不同。

结论

开发的风险引擎取得了积极的成果,强调需要优化重症监护床位的利用,并客观识别需要这些服务的高危孕妇。这种方法有望提高孕妇的有效和高效管理,特别是在全球资源有限的地区。通过简化高危病例的 ICU 收治,可以更好地分配关键资源,最终改善母婴健康结局。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验