School of Life Sciences, University of Warwick, Coventry, United Kingdom.
Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, United Kingdom.
mBio. 2024 Aug 14;15(8):e0130224. doi: 10.1128/mbio.01302-24. Epub 2024 Jul 23.
Membrane potential is a useful marker for antimicrobial susceptibility testing (AST) due to its fundamental roles in cell function. However, the difficulties associated with measuring the membrane potential in microbes restrict its broad application. In this study, we present bioelectrical AST (BeAST) using the model fungus . Using fluorescent indicators [DiBAC4(3), ThT, and TMRM], we measured plasma and mitochondrial membrane-potential dynamics upon electric stimulation. We find that a 2.5 second electric stimulation induces hyperpolarization of plasma membrane lasting 20 minutes in vital , but depolarization in inhibited cells. The numerical simulation of FitzHugh-Nagumo model successfully recapitulates vitality-dependent dynamics. The model also suggests that the magnitude of plasma-membrane potential dynamics (PMD) correlates with the degree of inhibition. To test this prediction and to examine if BeAST can be used for assessing novel anti-fungal compounds, we treat cells with biogenic silver nanoparticles (bioAgNPs) synthesized using orange fruit flavonoids and Fusarium oxysporum. Comparing BeAST with optical density assay alongside various stressors, we show that PMD correlates with the magnitude of growth inhibitions. These results suggest that BeAST holds promise for screening anti-fungal compounds, offering a valuable approach to tackling antimicrobial resistance.
Rapid assessment of the efficacy of antimicrobials is important for optimizing treatments, avoiding misuse and facilitating the screening of new antimicrobials. The need for rapid antimicrobial susceptibility testing (AST) is growing with the rise of antimicrobial resistance. Here, we present bioelectrical AST (BeAST). Combining time-lapse microscopy and mathematical modeling, we show that electrically induced membrane potential dynamics of yeast cells correspond to the strength of growth inhibition. Furthermore, we demonstrate the utility of BeAST for assessing antimicrobial activities of novel compounds using biogenic silver nanoparticles.
由于其在细胞功能中的基本作用,膜电位是抗菌药物敏感性测试(AST)的有用标记。然而,由于测量微生物中膜电位的困难,限制了其广泛应用。在本研究中,我们使用模式真菌 提出了生物电 AST(BeAST)。使用荧光指示剂[DiBAC4(3),ThT 和 TMRM],我们测量了电刺激下的质膜和线粒体膜电位动力学。我们发现,2.5 秒的电刺激会在存活的细胞中引起质膜超极化,持续 20 分钟,但在被抑制的细胞中会引起去极化。FitzHugh-Nagumo 模型的数值模拟成功地再现了活力相关的动力学。该模型还表明,质膜电位动力学(PMD)的幅度与抑制程度相关。为了验证这一预测,并研究 BeAST 是否可用于评估新型抗真菌化合物,我们用生物合成的银纳米粒子(bioAgNPs)处理细胞,这些银纳米粒子是使用橙色水果类黄酮和尖孢镰刀菌合成的。通过将 BeAST 与各种应激因素的光密度测定法进行比较,我们发现 PMD 与生长抑制的程度相关。这些结果表明,BeAST 有望用于筛选抗真菌化合物,为解决抗菌药物耐药性提供了一种有价值的方法。
快速评估抗菌药物的疗效对于优化治疗、避免滥用和促进新抗菌药物的筛选非常重要。随着抗菌药物耐药性的增加,对抗菌药物敏感性测试(AST)的快速需求也在增加。在这里,我们提出了生物电 AST(BeAST)。通过结合延时显微镜和数学建模,我们表明酵母细胞的电诱导膜电位动力学与生长抑制的强度相对应。此外,我们还展示了 BeAST 用于评估新型化合物抗菌活性的效用,使用生物合成的银纳米粒子。