Bertolotti Pietro, Gallinardi Federico, Ghidoli Marta, Bertarelli Chiara, Lanzani Guglielmo, Paternò Giuseppe Maria
Center for Nanoscience and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milan, Italy.
Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, 20133 Milan, Italy.
Eur Phys J Plus. 2025;140(4):336. doi: 10.1140/epjp/s13360-025-06263-7. Epub 2025 Apr 24.
Bacterial persistence and resistance to antibiotics pose critical challenges in healthcare and environmental contexts. Recent studies revealing that bacteria possess a dynamic electrical membrane potential open new avenues for influencing bacterial behaviour and drug susceptibility. In this work, we present a novel light-responsive strategy to modulate bacterial antibiotic persistence using Ziapin2, an azobenzene photoswitch previously shown to alter bacterial membrane potential. We selected two broad-spectrum antibiotics with distinct modes of action: Kanamycin, which requires cytosolic uptake to inhibit protein synthesis, and Ampicillin, which targets cell wall polymerization at the cell envelope, to probe the role of membrane potential in antibiotic efficacy. Our findings show that when is exposed to Kanamycin and Ziapin2, photoactivation (470 nm) significantly impacts bacterial viability: under illumination, the previously lethal effects of Kanamycin are markedly reduced, suggesting that membrane potential changes drive altered antibiotic uptake or intracellular accumulation. In contrast, Ampicillin-treated samples remain largely unaffected by light-induced membrane modulation, consistent with its action at the external cell envelope. Taken together, these results indicate that membrane potential manipulation can selectively influence the activity of antibiotics whose intracellular uptake is critical to their function. This proof-of-concept study underscores the potential of non-genetic, light-based interventions to modulate bacterial susceptibility in real time. Future work will expand this approach by exploring additional antibiotic classes and novel azobenzene derivatives, ultimately advancing our understanding of bacterial bioelectric regulation and its applications in antimicrobial therapies.
细菌的持续性和对抗生素的耐药性在医疗保健和环境领域构成了严峻挑战。最近的研究表明细菌具有动态的电膜电位,这为影响细菌行为和药物敏感性开辟了新途径。在这项工作中,我们提出了一种新的光响应策略,使用Ziapin2来调节细菌对抗生素的持续性,Ziapin2是一种先前已证明可改变细菌膜电位的偶氮苯光开关。我们选择了两种作用方式不同的广谱抗生素:需要胞质摄取以抑制蛋白质合成的卡那霉素,以及靶向细胞包膜处细胞壁聚合的氨苄青霉素,以探究膜电位在抗生素疗效中的作用。我们的研究结果表明,当暴露于卡那霉素和Ziapin2时,光激活(470nm)会显著影响细菌活力:在光照下,卡那霉素先前的致死作用明显降低,这表明膜电位变化会导致抗生素摄取或细胞内积累改变。相比之下,经氨苄青霉素处理的样品在很大程度上不受光诱导的膜调节影响,这与其在细胞外膜的作用一致。综上所述,这些结果表明膜电位操纵可以选择性地影响那些细胞内摄取对其功能至关重要的抗生素的活性。这项概念验证研究强调了基于光的非基因干预实时调节细菌敏感性的潜力。未来的工作将通过探索更多抗生素类别和新型偶氮苯衍生物来扩展这种方法,最终增进我们对细菌生物电调节及其在抗菌治疗中的应用的理解。