Suppr超能文献

揭示具有频率和时间集中的睡眠纺锤波(ConceFT)。

Unveil sleep spindles with concentration of frequency and time (ConceFT).

机构信息

Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States of America.

Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, United States of America.

出版信息

Physiol Meas. 2024 Aug 6;45(8). doi: 10.1088/1361-6579/ad66aa.

Abstract

Sleep spindles contain crucial brain dynamics information. We introduce the novel non-linear time-frequency (TF) analysis tool 'Concentration of Frequency and Time' (ConceFT) to create an interpretable automated algorithm for sleep spindle annotation in EEG data and to measure spindle instantaneous frequencies (IFs).ConceFT effectively reduces stochastic EEG influence, enhancing spindle visibility in the TF representation. Our automated spindle detection algorithm, ConceFT-Spindle (ConceFT-S), is compared to A7 (non-deep learning) and SUMO (deep learning) using Dream and Montreal Archive of Sleep Studies (MASS) benchmark databases. We also quantify spindle IF dynamics.ConceFT-S achieves F1 scores of 0.765 in Dream and 0.791 in MASS, which surpass A7 and SUMO. We reveal that spindle IF is generally nonlinear.ConceFT offers an accurate, interpretable EEG-based sleep spindle detection algorithm and enables spindle IF quantification.

摘要

睡眠纺锤波包含关键的大脑动力学信息。我们引入了新颖的非线性时频 (TF) 分析工具“频率和时间的集中” (ConceFT),以创建一种可解释的自动化算法,用于 EEG 数据中的睡眠纺锤波注释,并测量纺锤波瞬时频率 (IF)。ConceFT 有效地减少了随机 EEG 的影响,增强了 TF 表示中的纺锤波可见性。我们的自动纺锤波检测算法 ConceFT-Spindle (ConceFT-S) 使用 Dream 和 Montreal Archive of Sleep Studies (MASS) 基准数据库与 A7 (非深度学习) 和 SUMO (深度学习) 进行了比较。我们还量化了纺锤波 IF 的动力学。ConceFT-S 在 Dream 中的 F1 评分为 0.765,在 MASS 中的 F1 评分为 0.791,超过了 A7 和 SUMO。我们揭示了纺锤波 IF 通常是非线性的。ConceFT 提供了一种准确、可解释的基于 EEG 的睡眠纺锤波检测算法,并能够量化纺锤波 IF。

相似文献

1
Unveil sleep spindles with concentration of frequency and time (ConceFT).
Physiol Meas. 2024 Aug 6;45(8). doi: 10.1088/1361-6579/ad66aa.
2
Enhanced automated sleep spindle detection algorithm based on synchrosqueezing.
Med Biol Eng Comput. 2015 Jul;53(7):635-44. doi: 10.1007/s11517-015-1265-z. Epub 2015 Mar 17.
3
Deep Learning-Based Classification of Epileptic Electroencephalography Signals Using a Concentrated Time-Frequency Approach.
Int J Neural Syst. 2023 Dec;33(12):2350064. doi: 10.1142/S0129065723500648. Epub 2023 Oct 13.
4
A personalized semi-automatic sleep spindle detection (PSASD) framework.
J Neurosci Methods. 2024 Jul;407:110064. doi: 10.1016/j.jneumeth.2024.110064. Epub 2024 Jan 30.
5
Spindler: a framework for parametric analysis and detection of spindles in EEG with application to sleep spindles.
J Neural Eng. 2018 Dec;15(6):066015. doi: 10.1088/1741-2552/aadc1c. Epub 2018 Aug 22.
6
Automated real-time EEG sleep spindle detection for brain-state-dependent brain stimulation.
J Sleep Res. 2022 Dec;31(6):e13733. doi: 10.1111/jsr.13733. Epub 2022 Sep 21.
7
A sleep spindle detection algorithm that emulates human expert spindle scoring.
J Neurosci Methods. 2019 Mar 15;316:3-11. doi: 10.1016/j.jneumeth.2018.08.014. Epub 2018 Aug 11.
8
A robust two-stage sleep spindle detection approach using single-channel EEG.
J Neural Eng. 2021 Mar 3;18(2). doi: 10.1088/1741-2552/abd463.
9
Deep-spindle: An automated sleep spindle detection system for analysis of infant sleep spindles.
Comput Biol Med. 2022 Nov;150:106096. doi: 10.1016/j.compbiomed.2022.106096. Epub 2022 Sep 15.
10
Multichannel sleep spindle detection using sparse low-rank optimization.
J Neurosci Methods. 2017 Aug 15;288:1-16. doi: 10.1016/j.jneumeth.2017.06.004. Epub 2017 Jun 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验