Suppr超能文献

电动滑板车和自行车与常规自行车和滑板车事故比较。

Injuries With Electric vs Conventional Scooters and Bicycles.

机构信息

Department of Urology, University of California, San Francisco.

Department of Epidemiology and Biostatistics, University of California, San Francisco.

出版信息

JAMA Netw Open. 2024 Jul 1;7(7):e2424131. doi: 10.1001/jamanetworkopen.2024.24131.

Abstract

IMPORTANCE

Micromobility, the use of small vehicles (primarily scooters and bicycles), has become a standard transportation method in the US. Despite broad adoption of electric micromobility vehicles, there is a paucity of data regarding the injury profiles of these vehicles, particularly in the US.

OBJECTIVE

To characterize micromobility injury trends in the US, identify demographic characteristic differences in users of electric and conventional vehicles, and identify factors associated with hospitalization.

DESIGN, SETTING, AND PARTICIPANTS: This cross-sectional study queried the National Electronic Injury Surveillance System, a comprehensive database that collates injury data associated with consumer products from emergency departments across the US to provide national estimates, from calendar year 2017 to 2022. Data on micromobility vehicle injuries (bicycles, scooters, electric bicycles [e-bicycles], and electric scooters [e-scooters]) were obtained.

MAIN OUTCOMES AND MEASURES

Trends in injury and hospitalization counts, injury characteristics, and factors associated with hospitalization.

RESULTS

From 2017 to 2022, the US recorded 2 499 843 bicycle (95% CI, 1 948 539-3 051 147), 304 783 scooter (95% CI, 232 466-377 099), 45 586 e-bicycle (95% CI, 17 684-73 488), and 189 517 e-scooter (95% CI, 126 101-252 932) injuries. The median age of the riders was 28 (IQR, 12-51) years; 72% were male, 1.5% Asian, 13% Black, 12% Hispanic, and 49% White. Annual e-bicycle and e-scooter injuries increased from 751 (95% CI, 0-1586) to 23 493 (95% CI, 11 043-35 944) and injuries increased from 8566 (95% CI, 5522-11 611) to 56 847 (95% CI, 39 673-74 022). Compared with conventional vehicles, electric vehicle accidents involved older individuals (median age, 31 vs 27 years; P < .001) and a higher proportion of Black riders (25% vs 12%; P < .001). Helmet use was less in electric vehicle incidents compared with conventional vehicles (43% vs 52%; P = .02), and injuries were more common in urban settings (83% vs 71%; P = .008). Age-adjusted odds of hospitalization among all Black individuals compared with White individuals was 0.76 (95% CI, 0.59-0.98; P = .04).

CONCLUSIONS AND RELEVANCE

In this cross-sectional study of micromobility vehicles, an increased number of injuries and hospitalizations was observed with electric vehicles compared with conventional vehicles from 2017 to 2022. These findings suggest the need for change in educational policies, infrastructure, and law to recenter on safety with the use of micromobility vehicles.

摘要

重要性

微移动性,即使用小型车辆(主要是滑板车和自行车),已成为美国的一种标准交通方式。尽管电动微移动车辆已广泛采用,但关于这些车辆的伤害情况数据却很少,尤其是在美国。

目的

描述美国微移动性伤害趋势,确定电动和传统车辆使用者在人口统计学特征方面的差异,并确定与住院相关的因素。

设计、地点和参与者:本横断面研究查询了国家电子伤害监测系统,这是一个综合数据库,从全美各地的急诊部门收集与消费品相关的伤害数据,以提供全国估计值,时间范围为 2017 年至 2022 年。获得了微移动车辆伤害(自行车、滑板车、电动自行车[e-bike]和电动滑板车[e-scooter])的数据。

主要结果和措施

伤害和住院人数、伤害特征以及与住院相关的因素的趋势。

结果

2017 年至 2022 年,美国记录了 2499843 起自行车(95%CI,1948539-3051147)、304783 起滑板车(95%CI,232466-377099)、45586 起电动自行车(95%CI,17684-73488)和 189517 起电动滑板车(95%CI,126101-252932)受伤事件。骑手的中位年龄为 28 岁(IQR,12-51);72%为男性,1.5%为亚洲人,13%为黑人,12%为西班牙裔,49%为白人。电动自行车和电动滑板车的年伤害人数从 751(95%CI,0-1586)增加到 23493(95%CI,11043-35944),伤害人数从 8566(95%CI,5522-11611)增加到 56847(95%CI,39673-74022)。与传统车辆相比,电动车辆事故涉及年龄较大的个体(中位年龄,31 岁与 27 岁;P<0.001)和更高比例的黑人骑手(25%比 12%;P<0.001)。与传统车辆相比,电动车辆事故中头盔的使用较少(43%比 52%;P=0.02),且在城市环境中更为常见(83%比 71%;P=0.008)。与白人相比,所有黑人个体住院的年龄调整比值比为 0.76(95%CI,0.59-0.98;P=0.04)。

结论和相关性

在这项对微移动车辆的横断面研究中,与 2017 年至 2022 年期间的传统车辆相比,电动车辆的伤害和住院人数有所增加。这些发现表明,需要改变教育政策、基础设施和法律,将重点放在微移动车辆使用的安全性上。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e920/11267411/b842b4acf734/jamanetwopen-e2424131-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验