Suppr超能文献

动态图引导的渐进式部分视图对齐聚类

Dynamic Graph Guided Progressive Partial View-Aligned Clustering.

作者信息

Zhao Liang, Xie Qiongjie, Li Zhengtao, Wu Songtao, Yang Yi

出版信息

IEEE Trans Neural Netw Learn Syst. 2025 May;36(5):9370-9382. doi: 10.1109/TNNLS.2024.3425457. Epub 2025 May 2.

Abstract

In recent years, there has been a growing focus on multiview data, driven by its rich complementary and consistent information, which has the potential to significantly enhance the performance of downstream tasks. Although many multiview clustering (MVC) methods have achieved promising results by integrating the information of multiple views to learn the consistent representation or consistent graph, these methods typically require complete and entirely accurate correspondences between multiview data, which is challenging to fulfill in practice leading to the problem of partially view-aligned clustering (PVC). To tackle it, we propose a novel method, called dynamic graph guided progressive partial view-aligned clustering (DGPPVC) in this article. To the best of our knowledge, this could be the first work to employ graph convolutional network (GCN) to address the problem of PVC, which explores GCN with dynamic adjacency matrix to reduce unreliable alignments and locate the feature representation with consistent graph structure. In particular, DGPPVC develops an end-to-end framework that encompasses graph construction, feature representation learning, and alignment relationships learning, in which the three parts mutually influence and benefit each other. Moreover, DGPPVC adopts a novel alignment learning strategy that progresses from simplicity to complexity, enabling the step-by-step acquisition of unknown correspondences between different modalities. By giving priority to simple instance pairs, a variant of Jaccard similarities is designed to identify more reliable and complex alignments progressively. During the gradual learning process of alignment relationships, the graph structure matrix is continually and dynamically optimized, thus acquiring a greater variety of graph information between different views. Experiments on several real-world datasets show our promising performance compared with the state-of-the-art methods in partially view-aligned clustering.

摘要

近年来,由于多视图数据具有丰富的互补和一致信息,能够显著提升下游任务的性能,因此对其的关注日益增加。尽管许多多视图聚类(MVC)方法通过整合多个视图的信息来学习一致表示或一致图取得了不错的成果,但这些方法通常要求多视图数据之间有完整且完全准确的对应关系,而这在实际中很难实现,从而导致了部分视图对齐聚类(PVC)问题。为了解决这个问题,我们在本文中提出了一种名为动态图引导渐进部分视图对齐聚类(DGPPVC)的新方法。据我们所知,这可能是第一项采用图卷积网络(GCN)来解决PVC问题的工作,它利用动态邻接矩阵探索GCN以减少不可靠对齐并定位具有一致图结构的特征表示。具体而言,DGPPVC开发了一个端到端框架,涵盖图构建、特征表示学习和对齐关系学习,其中这三个部分相互影响、相互受益。此外,DGPPVC采用了一种从简单到复杂的新颖对齐学习策略,能够逐步获取不同模态之间未知的对应关系。通过优先处理简单实例对,设计了一种杰卡德相似度变体来逐步识别更可靠和复杂的对齐。在对齐关系的逐步学习过程中,图结构矩阵不断动态优化,从而获取不同视图之间更多样化的图信息。在几个真实世界数据集上的实验表明,与部分视图对齐聚类中的现有方法相比,我们的方法具有良好的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验