Suppr超能文献

DCAI:一种用于肺结节良恶性分类的双交叉注意力整合框架。

DCAI: a dual cross-attention integration framework for benign-malignant classification of pulmonary nodules.

作者信息

Wang Shuling, Wang Suixue, Sun Rongdao

机构信息

Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China.

School of Computer Science and Technology, Hainan University, Haikou, China.

出版信息

Front Med (Lausanne). 2025 Jul 21;12:1636008. doi: 10.3389/fmed.2025.1636008. eCollection 2025.

Abstract

Lung cancer remains a leading cause of cancer-related mortality worldwide, and accurate early identification of malignant pulmonary nodules is critical for improving patient outcomes. Although artificial intelligence (AI) technology has shown promise in pulmonary nodule benign-malignant classification, existing methods struggle with modality heterogeneity and limited exploitation of complementary information across modalities. To address the above issues, we propose a novel multimodal framework, the Dual Cross-Attention Integration framework (DCAI), for benign-malignant classification of pulmonary nodules. Specifically, we first convert 3D nodules into multiple 2D images and obtain nodule features annotated by clinical experts. These features are encoded using Transformer models, and then a dual cross-attention module is proposed to dynamically align and interact with the complementary information between the different modalities. The fused representations from both modalities are then concatenated for benign-malignant prediction. We evaluate our proposed method on the LIDC-IDRI dataset, and experimental results demonstrate that DCAI outperforms several existing multimodal methods, highlighting the effectiveness of our approach in improving the accuracy of pulmonary nodule benign-malignant classification.

摘要

肺癌仍然是全球癌症相关死亡的主要原因,准确早期识别恶性肺结节对于改善患者预后至关重要。尽管人工智能(AI)技术在肺结节良恶性分类方面已显示出前景,但现有方法在模态异质性以及跨模态互补信息利用有限方面存在困难。为解决上述问题,我们提出了一种用于肺结节良恶性分类的新型多模态框架,即双交叉注意力整合框架(DCAI)。具体而言,我们首先将三维结节转换为多个二维图像,并获取由临床专家标注的结节特征。这些特征使用Transformer模型进行编码,然后提出一个双交叉注意力模块,以动态对齐并与不同模态之间的互补信息进行交互。然后将来自两种模态的融合表示进行拼接以进行良恶性预测。我们在LIDC-IDRI数据集上评估了我们提出的方法,实验结果表明DCAI优于几种现有的多模态方法,突出了我们的方法在提高肺结节良恶性分类准确性方面的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7784/12318739/7d80d98c05b7/fmed-12-1636008-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验