Suppr超能文献

机器学习 XGBoost 和 SHAP 模型在 NBA 比赛结果预测中的集成及定量分析方法。

Integration of machine learning XGBoost and SHAP models for NBA game outcome prediction and quantitative analysis methodology.

机构信息

School of Intelligent Sports Engineering, Wuhan Sports University, Wuhan, Hubei, People's Republic of China.

Key Laboratory of Sports Engineering of General Administration of Sport of China, Wuhan Sports University, Wuhan, Hubei, People's Republic of China.

出版信息

PLoS One. 2024 Jul 23;19(7):e0307478. doi: 10.1371/journal.pone.0307478. eCollection 2024.

Abstract

This study investigated the application of artificial intelligence in real-time prediction of professional basketball games, identifying the variations within performance indicators that are critical in determining the outcomes of the games. Utilizing games data from the NBA seasons 2021 to 2023 as the sample, the study constructed a real-time predictive model for NBA game outcomes, integrating the machine learning XGBoost and SHAP algorithms. The model simulated the prediction of game outcomes at different time of games and effectively quantified the analysis of key factors that influenced game outcomes. The study's results demonstrated that the XGBoost algorithm was highly effective in predicting NBA game outcomes. Key performance indicators such as field goal percentage, defensive rebounds, and turnovers were consistently related to the outcomes at all times during the game. In the first half of the game, assists were a key indicator affecting the outcome of the game. In the second half of the games, offensive rebounds and three-point shooting percentage were key indicators affecting the outcome of the games. The performance of the real-time prediction model for NBA game outcomes, which integrates machine learning XGBoost and SHAP algorithms, is found to be excellent and highly interpretable. By quantifying the factors that determine victory, it is able to provide significant decision support for coaches in arranging tactical strategies on the court. Moreover, the study provides reliable data references for sports bettors, athletes, club managers, and sponsors.

摘要

本研究探讨了人工智能在职业篮球比赛实时预测中的应用,确定了在确定比赛结果方面至关重要的绩效指标变化。本研究利用 2021 年至 2023 年 NBA 赛季的比赛数据作为样本,构建了一个用于 NBA 比赛结果的实时预测模型,集成了机器学习 XGBoost 和 SHAP 算法。该模型模拟了不同比赛时段的比赛结果预测,并有效地量化了影响比赛结果的关键因素分析。研究结果表明,XGBoost 算法在预测 NBA 比赛结果方面非常有效。关键绩效指标,如投篮命中率、防守篮板和失误,在比赛的各个阶段都与比赛结果密切相关。在比赛的上半场,助攻是影响比赛结果的关键指标。在比赛的下半场,进攻篮板和三分球命中率是影响比赛结果的关键指标。本研究集成机器学习 XGBoost 和 SHAP 算法的 NBA 比赛结果实时预测模型的性能被发现非常出色且具有高度可解释性。通过量化决定胜利的因素,它能够为教练在安排战术策略方面提供重要的决策支持。此外,本研究为体育博彩者、运动员、俱乐部经理和赞助商提供了可靠的数据参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ee3/11265715/ebc209ac6520/pone.0307478.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验