Karmakar Arka, Al-Mahboob Abdullah, Zawadzka Natalia, Raczyński Mateusz, Yang Weiguang, Arfaoui Mehdi, Kucharek Julia, Sadowski Jerzy T, Shin Hyeon Suk, Babiński Adam, Pacuski Wojciech, Kazimierczuk Tomasz, Molas Maciej R
Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland.
Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States.
Nano Lett. 2024 Aug 7;24(31):9459-9467. doi: 10.1021/acs.nanolett.4c01764. Epub 2024 Jul 23.
Heterostructures (HSs) formed by the transition-metal dichalcogenide materials have shown great promise in next-generation (opto)electronic applications. An artificially twisted HS allows us to manipulate the optical and electronic properties. In this work, we introduce the understanding of the energy transfer (ET) process governed by the dipolar interaction in a twisted molybdenum diselenide (MoSe) homobilayer any charge-blocking interlayer. We fabricated an unconventional homobilayer (i.e., HS) with a large twist angle (∼57°) by combining the chemical vapor deposition (CVD) and mechanical exfoliation (Exf.) techniques to fully exploit the lattice parameter mismatch and indirect/direct (CVD/Exf.) bandgap nature. These effectively weaken the interlayer charge transfer and allow the ET to control the carrier recombination channels. Our experimental and theoretical results explain a massive HS photoluminescence enhancement due to an efficient ET process. This work shows that the electronically decoupled MoSe homobilayer is coupled by the ET process, mimicking a "true" heterobilayer nature.
由过渡金属二硫属化物材料形成的异质结构(HSs)在下一代(光)电子应用中显示出巨大潜力。人工扭曲的HS使我们能够操纵光学和电子特性。在这项工作中,我们阐述了对由扭曲的二硒化钼(MoSe)同质双层中的偶极相互作用以及任何电荷阻挡中间层所控制的能量转移(ET)过程的理解。我们通过结合化学气相沉积(CVD)和机械剥离(Exf.)技术,制造了具有大扭曲角(约57°)的非常规同质双层(即HS),以充分利用晶格参数失配以及间接/直接(CVD/Exf.)带隙性质。这些有效地削弱了层间电荷转移,并使ET能够控制载流子复合通道。我们的实验和理论结果解释了由于高效ET过程导致的大量HS光致发光增强。这项工作表明,电子解耦的MoSe同质双层通过ET过程耦合在一起,模拟了“真正的”异质双层性质。