Suppr超能文献

有丝分裂纺锤体对核型变化的可塑性。

Plasticity of the mitotic spindle in response to karyotype variation.

机构信息

Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA.

Stowers Institute for Medical Research, Kansas City, MO 64110, USA.

出版信息

Curr Biol. 2024 Aug 5;34(15):3416-3428.e4. doi: 10.1016/j.cub.2024.06.058. Epub 2024 Jul 22.

Abstract

Karyotypes, composed of chromosomes, must be accurately partitioned by the mitotic spindle for optimal cell health. However, it is unknown how underlying characteristics of karyotypes, such as chromosome number and size, govern the scaling of the mitotic spindle to ensure accurate chromosome segregation and cell proliferation. We utilize budding yeast strains engineered with fewer chromosomes, including just two "mega chromosomes," to study how spindle size and function are responsive to, and scaled by, karyotype. We determined that deletion and overexpression of spindle-related genes are detrimental to the growth of strains with two chromosomes, suggesting that mega chromosomes exert altered demands on the spindle. Using confocal microscopy, we demonstrate that cells with fewer but longer chromosomes have smaller spindle pole bodies, fewer microtubules, and longer spindles. Moreover, using electron tomography and confocal imaging, we observe elongated, bent anaphase spindles with fewer core microtubules in strains with mega chromosomes. Cells harboring mega chromosomes grow more slowly, are delayed in mitosis, and a subset struggle to complete chromosome segregation. We propose that the karyotype of the cell dictates the microtubule number, type, spindle pole body size, and spindle length, subsequently influencing the dynamics of mitosis, such as the rate of spindle elongation and the velocity of pole separation. Taken together, our results suggest that mitotic spindles are highly plastic ultrastructures that can accommodate and adjust to a variety of karyotypes, even within a species.

摘要

染色体核型必须通过有丝分裂纺锤体精确分区,以保证细胞的最佳健康状态。然而,目前尚不清楚染色体核型的潜在特征,如染色体数量和大小,如何控制有丝分裂纺锤体的比例,以确保染色体的准确分离和细胞增殖。我们利用工程菌构建了具有较少染色体的酵母菌株,包括两个“巨型染色体”,以研究纺锤体的大小和功能如何响应并适应染色体核型。我们发现,与两个染色体相比,删除和过表达与纺锤体相关的基因对菌株的生长有害,这表明巨型染色体对纺锤体施加了不同的需求。通过共聚焦显微镜,我们证明了具有较少但较长染色体的细胞具有较小的纺锤体极体、较少的微管和较长的纺锤体。此外,通过电子断层扫描和共聚焦成像,我们观察到具有巨型染色体的菌株的后期纺锤体拉长、弯曲,核心微管较少。携带巨型染色体的细胞生长缓慢,有丝分裂延迟,一部分细胞难以完成染色体分离。我们提出,细胞的染色体核型决定了微管数量、类型、纺锤体极体大小和纺锤体长度,进而影响有丝分裂的动力学,如纺锤体伸长的速度和极体分离的速度。总之,我们的结果表明,有丝分裂纺锤体是高度可塑的超微结构,可以适应和调整各种染色体核型,甚至在同一物种内也是如此。

相似文献

1
Plasticity of the mitotic spindle in response to karyotype variation.有丝分裂纺锤体对核型变化的可塑性。
Curr Biol. 2024 Aug 5;34(15):3416-3428.e4. doi: 10.1016/j.cub.2024.06.058. Epub 2024 Jul 22.
3
The centromere bottlebrush requires a multi-microtubule attachment.着丝粒刷需要多微管附着。
Mol Biol Cell. 2025 Jun 1;36(6):ar70. doi: 10.1091/mbc.E25-02-0050. Epub 2025 Apr 23.
6
Optimal strategies for correcting merotelic chromosome attachments in anaphase.纠正后期染色体错连的最佳策略。
Proc Natl Acad Sci U S A. 2025 Feb 4;122(5):e2416459122. doi: 10.1073/pnas.2416459122. Epub 2025 Jan 30.

本文引用的文献

8
Creating a functional single-chromosome yeast.构建具有功能性的单染色体酵母。
Nature. 2018 Aug;560(7718):331-335. doi: 10.1038/s41586-018-0382-x. Epub 2018 Aug 1.
9
Cryopreparation and Electron Tomography of Yeast Cells.酵母细胞的冷冻制备与电子断层扫描
Cold Spring Harb Protoc. 2017 Mar 1;2017(3):2017/3/pdb.prot085589. doi: 10.1101/pdb.prot085589.
10
Analysis of the Budding Yeast Cell Cycle by Flow Cytometry.通过流式细胞术分析出芽酵母细胞周期
Cold Spring Harb Protoc. 2017 Jan 3;2017(1):2017/1/pdb.prot088740. doi: 10.1101/pdb.prot088740.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验