Suppr超能文献

基于临床特征的双参数 MRI 深度学习放射组学模型的构建及其预测前列腺癌患者神经周围侵犯的效能验证

Development and Validation of a Biparametric MRI Deep Learning Radiomics Model with Clinical Characteristics for Predicting Perineural Invasion in Patients with Prostate Cancer.

机构信息

Department of Radiology, Children's Hospital of Soochow University, Suzhou 215025, China; Department of Radiology, Second Hospital of Soochow University, Suzhou 215004, China.

Department of Radiology, Children's Hospital of Soochow University, Suzhou 215025, China.

出版信息

Acad Radiol. 2024 Dec;31(12):5054-5065. doi: 10.1016/j.acra.2024.07.013. Epub 2024 Jul 22.

Abstract

RATIONALE AND OBJECTIVES

Perineural invasion (PNI) is an important prognostic biomarker for prostate cancer (PCa). This study aimed to develop and validate a predictive model integrating biparametric MRI-based deep learning radiomics and clinical characteristics for the non-invasive prediction of PNI in patients with PCa.

MATERIALS AND METHODS

In this prospective study, 557 PCa patients who underwent preoperative MRI and radical prostatectomy were recruited and randomly divided into the training and the validation cohorts at a ratio of 7:3. Clinical model for predicting PNI was constructed by univariate and multivariate regression analyses on various clinical indicators, followed by logistic regression. Radiomics and deep learning methods were used to develop different MRI-based radiomics and deep learning models. Subsequently, the clinical, radiomics, and deep learning signatures were combined to develop the integrated deep learning-radiomics-clinical model (DLRC). The performance of the models was assessed by plotting the receiver operating characteristic (ROC) curves and precision-recall (PR) curves, as well as calculating the area under the ROC and PR curves (ROC-AUC and PR-AUC). The calibration curve and decision curve were used to evaluate the model's goodness of fit and clinical benefit.

RESULTS

The DLRC model demonstrated the highest performance in both the training and the validation cohorts, with ROC-AUCs of 0.914 and 0.848, respectively, and PR-AUCs of 0.948 and 0.926, respectively. The DLRC model showed good calibration and clinical benefit in both cohorts.

CONCLUSION

The DLRC model, which integrated clinical, radiomics, and deep learning signatures, can serve as a robust tool for predicting PNI in patients with PCa, thus aiding in developing effective treatment strategies.

摘要

背景与目的

神经周围侵犯(PNI)是前列腺癌(PCa)的一个重要预后生物标志物。本研究旨在开发和验证一种基于多参数 MRI 的深度学习放射组学和临床特征的综合预测模型,以无创预测 PCa 患者的 PNI。

材料与方法

在这项前瞻性研究中,共招募了 557 例接受术前 MRI 和根治性前列腺切除术的 PCa 患者,按照 7:3 的比例随机分为训练集和验证集。通过对各种临床指标进行单因素和多因素回归分析,构建预测 PNI 的临床模型,然后进行逻辑回归。使用放射组学和深度学习方法开发不同的 MRI 基于放射组学和深度学习模型。随后,将临床、放射组学和深度学习特征相结合,开发综合深度学习-放射组学-临床模型(DLRC)。通过绘制受试者工作特征(ROC)曲线和精确召回(PR)曲线,以及计算 ROC 曲线和 PR 曲线下的面积(ROC-AUC 和 PR-AUC)来评估模型的性能。通过校准曲线和决策曲线来评估模型的拟合优度和临床获益。

结果

DLRC 模型在训练集和验证集中的表现均最高,ROC-AUC 分别为 0.914 和 0.848,PR-AUC 分别为 0.948 和 0.926。DLRC 模型在两个队列中均表现出良好的校准和临床获益。

结论

DLRC 模型整合了临床、放射组学和深度学习特征,可作为预测 PCa 患者 PNI 的有力工具,从而有助于制定有效的治疗策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验