Suppr超能文献

基于深度学习算法的多模态磁共振成像放射组学和病理组学数据可改善原发性前列腺癌骨转移的预测。

Deep learning algorithm-based multimodal MRI radiomics and pathomics data improve prediction of bone metastases in primary prostate cancer.

作者信息

Zhang Yun-Feng, Zhou Chuan, Guo Sheng, Wang Chao, Yang Jin, Yang Zhi-Jun, Wang Rong, Zhang Xu, Zhou Feng-Hai

机构信息

The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou, 730000, China.

The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China.

出版信息

J Cancer Res Clin Oncol. 2024 Feb 5;150(2):78. doi: 10.1007/s00432-023-05574-5.

Abstract

PURPOSE

Bone metastasis is a significant contributor to morbidity and mortality in advanced prostate cancer, and early diagnosis is challenging due to its insidious onset. The use of machine learning to obtain prognostic information from pathological images has been highlighted. However, there is a limited understanding of the potential of early prediction of bone metastasis through the feature combination method from various sources. This study presents a method of integrating multimodal data to enhance the feasibility of early diagnosis of bone metastasis in prostate cancer.

METHODS AND MATERIALS

Overall, 211 patients diagnosed with prostate cancer (PCa) at Gansu Provincial Hospital between January 2017 and February 2023 were included in this study. The patients were randomized (8:2) into a training group (n = 169) and a validation group (n = 42). The region of interest (ROI) were segmented from the three magnetic resonance imaging (MRI) sequences (T2WI, DWI, and ADC), and pathological features were extracted from tissue sections (hematoxylin and eosin [H&E] staining, 10 × 20). A deep learning (DL) model using ResNet 50 was employed to extract deep transfer learning (DTL) features. The least absolute shrinkage and selection operator (LASSO) regression method was utilized for feature selection, feature construction, and reducing feature dimensions. Different machine learning classifiers were used to build predictive models. The performance of the models was evaluated using receiver operating characteristic curves. The net clinical benefit was assessed using decision curve analysis (DCA). The goodness of fit was evaluated using calibration curves. A joint model nomogram was eventually developed by combining clinically independent risk factors.

RESULTS

The best prediction models based on DTL and pathomics features showed area under the curve (AUC) values of 0.89 (95% confidence interval [CI], 0.799-0.989) and 0.85 (95% CI, 0.714-0.989), respectively. The AUC for the best prediction model based on radiomics features and combining radiomics features, DTL features, and pathomics features were 0.86 (95% CI, 0.735-0.979) and 0.93 (95% CI, 0.854-1.000), respectively. Based on DCA and calibration curves, the model demonstrated good net clinical benefit and fit.

CONCLUSION

Multimodal radiomics and pathomics serve as valuable predictors of the risk of bone metastases in patients with primary PCa.

摘要

目的

骨转移是晚期前列腺癌发病和死亡的重要原因,由于其发病隐匿,早期诊断具有挑战性。利用机器学习从病理图像中获取预后信息受到了关注。然而,对于通过多种来源的特征组合方法早期预测骨转移的潜力了解有限。本研究提出了一种整合多模态数据的方法,以提高前列腺癌骨转移早期诊断的可行性。

方法和材料

本研究纳入了2017年1月至2023年2月期间在甘肃省医院诊断为前列腺癌(PCa)的211例患者。患者被随机(8:2)分为训练组(n = 169)和验证组(n = 42)。从三个磁共振成像(MRI)序列(T2WI、DWI和ADC)中分割出感兴趣区域(ROI),并从组织切片(苏木精和伊红[H&E]染色,10×20)中提取病理特征。采用基于ResNet 50的深度学习(DL)模型提取深度迁移学习(DTL)特征。使用最小绝对收缩和选择算子(LASSO)回归方法进行特征选择、特征构建和降维。使用不同的机器学习分类器构建预测模型。使用受试者工作特征曲线评估模型的性能。使用决策曲线分析(DCA)评估净临床效益。使用校准曲线评估拟合优度。最终通过结合临床独立危险因素建立联合模型列线图。

结果

基于DTL和病理组学特征的最佳预测模型的曲线下面积(AUC)值分别为0.89(95%置信区间[CI],0.799 - 0.989)和

0.85(95% CI,0.714 - 0.989)。基于影像组学特征以及结合影像组学特征、DTL特征和病理组学特征的最佳预测模型的AUC分别为0.86(95% CI,0.

735 - 0.979)和0.93(95% CI,0.854 - 1.000)。基于DCA和校准曲线,该模型显示出良好的净临床效益和拟合度。

结论

多模态影像组学和病理组学是原发性PCa患者骨转移风险的有价值预测指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11e3/11793743/64d40c90a174/432_2023_5574_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验