Medical Faculty, Department of Anatomy, Gaziantep Islamıc Science and Technology University, Gaziantep, Turkey.
Faculty of Engineering and Natural Sciences, Department of Software Engineering, Bandırma Onyedi Eylül University, Balıkesir, Türkiye.
Sci Rep. 2024 Jul 23;14(1):16879. doi: 10.1038/s41598-024-65521-3.
This research endeavors to prognosticate gender by harnessing the potential of skull computed tomography (CT) images, given the seminal role of gender identification in the realm of identification. The study encompasses a corpus of CT images of cranial structures derived from 218 male and 203 female subjects, constituting a total cohort of 421 individuals within the age bracket of 25 to 65 years. Employing deep learning, a prominent subset of machine learning algorithms, the study deploys convolutional neural network (CNN) models to excavate profound attributes inherent in the skull CT images. In pursuit of the research objective, the focal methodology involves the exclusive application of deep learning algorithms to image datasets, culminating in an accuracy rate of 96.4%. The gender estimation process exhibits a precision of 96.1% for male individuals and 96.8% for female individuals. The precision performance varies across different selections of feature numbers, namely 100, 300, and 500, alongside 1000 features without feature selection. The respective precision rates for these selections are recorded as 95.0%, 95.5%, 96.2%, and 96.4%. It is notable that gender estimation via visual radiography mitigates the discrepancy in measurements between experts, concurrently yielding an expedited estimation rate. Predicated on the empirical findings of this investigation, it is inferred that the efficacy of the CNN model, the configurational intricacies of the classifier, and the judicious selection of features collectively constitute pivotal determinants in shaping the performance attributes of the proposed methodology.
本研究旨在通过利用颅骨计算机断层扫描(CT)图像的潜力来预测性别,因为性别识别在识别领域中起着重要作用。该研究包括来自 218 名男性和 203 名女性受试者的颅骨结构 CT 图像的语料库,总共有 421 名年龄在 25 至 65 岁的个体。该研究采用深度学习,这是机器学习算法的一个重要子集,使用卷积神经网络(CNN)模型从颅骨 CT 图像中挖掘出深层次的属性。为了实现研究目标,该研究采用了一种专注的方法,即仅将深度学习算法应用于图像数据集,最终准确率达到 96.4%。性别估计过程对男性个体的准确率为 96.1%,对女性个体的准确率为 96.8%。精度性能因特征数量的不同选择而有所变化,即 100、300 和 500 个特征,以及不进行特征选择的 1000 个特征。这些选择的精度率分别记录为 95.0%、95.5%、96.2%和 96.4%。值得注意的是,通过视觉放射照相术进行性别估计可以减轻专家之间测量的差异,同时提高估计速度。基于本研究的实证结果,可以推断 CNN 模型的效能、分类器的配置复杂性以及特征的明智选择共同构成了所提出方法性能属性的关键决定因素。