Ulubaba Hilal Er, Atik İpek, Çiftçi Rukiye, Eken Özgür, Aldhahi Monira I
Department of Radiology, Inonu University, Malatya, Türkiye.
Department of Electrical Electronics Engineering, Gaziantep Islam Science and Technology University, Gaziantep, Türkiye.
BMC Med Imaging. 2025 Jul 1;25(1):260. doi: 10.1186/s12880-025-01809-8.
Accurate gender estimation plays a crucial role in forensic identification, especially in mass disasters or cases involving fragmented or decomposed remains where traditional skeletal landmarks are unavailable. This study aimed to develop a deep learning-based model for gender classification using hand radiographs, offering a rapid and objective alternative to conventional methods.
We analyzed 470 left-hand X-ray images from adults aged 18 to 65 years using four convolutional neural network (CNN) architectures: ResNet-18, ResNet-50, InceptionV3, and EfficientNet-B0. Following image preprocessing and data augmentation, models were trained and validated using standard classification metrics: accuracy, precision, recall, and F1 score. Data augmentation included random rotation, horizontal flipping, and brightness adjustments to enhance model generalization.
Among the tested models, ResNet-50 achieved the highest classification accuracy (93.2%) with precision of 92.4%, recall of 93.3%, and F1 score of 92.5%. While other models demonstrated acceptable performance, ResNet-50 consistently outperformed them across all metrics. These findings suggest CNNs can reliably extract sexually dimorphic features from hand radiographs.
Deep learning approaches, particularly ResNet-50, provide a robust, scalable, and efficient solution for gender prediction from hand X-ray images. This method may serve as a valuable tool in forensic scenarios where speed and reliability are critical. Future research should validate these findings across diverse populations and incorporate explainable AI techniques to enhance interpretability.
准确的性别估计在法医鉴定中起着至关重要的作用,特别是在大规模灾难或涉及骨骼残骸破碎或腐烂且无法使用传统骨骼标志的案件中。本研究旨在开发一种基于深度学习的模型,用于使用手部X光片进行性别分类,为传统方法提供一种快速且客观的替代方法。
我们使用四种卷积神经网络(CNN)架构(ResNet-18、ResNet-50、InceptionV3和EfficientNet-B0)分析了470张18至65岁成年人的左手X光图像。在图像预处理和数据增强之后,使用标准分类指标(准确率、精确率、召回率和F1分数)对模型进行训练和验证。数据增强包括随机旋转、水平翻转和亮度调整,以增强模型的泛化能力。
在测试的模型中,ResNet-50实现了最高的分类准确率(93.2%),精确率为92.4%,召回率为93.3%,F1分数为92.5%。虽然其他模型表现出可接受的性能,但ResNet-50在所有指标上始终优于它们。这些发现表明,卷积神经网络可以可靠地从手部X光片中提取性别差异特征。
深度学习方法,特别是ResNet-50,为从手部X光图像进行性别预测提供了一种强大、可扩展且高效的解决方案。这种方法在速度和可靠性至关重要的法医场景中可能是一种有价值的工具。未来的研究应在不同人群中验证这些发现,并纳入可解释的人工智能技术以增强可解释性。