Suppr超能文献

基于量子计算和高效门分解的电力系统故障诊断

Power system fault diagnosis with quantum computing and efficient gate decomposition.

作者信息

Fei Xiang, Zhao Huan, Zhou Xiyuan, Zhao Junhua, Shu Ting, Wen Fushuan

机构信息

School of Data Science, The Chinese University of Hong Kong (Shenzhen), Shenzhen, 518172, China.

Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hong Kong, China.

出版信息

Sci Rep. 2024 Jul 23;14(1):16991. doi: 10.1038/s41598-024-67922-w.

Abstract

Power system fault diagnosis is crucial for identifying the location and causes of faults and providing decision-making support for power dispatchers. However, most classical methods suffer from significant time-consuming, memory overhead, and computational complexity issues as the scale of the power system concerned increases. With rapid development of quantum computing technology, the combinatorial optimization method based on quantum computing has shown certain advantages in computational time over existing methods. Given this background, this paper proposes a quantum computing based power system fault diagnosis method with the quantum approximate optimization algorithm. The proposed method reformulates the fault diagnosis problem as a Hamiltonian by using Ising model, which completely preserves the coupling relationship between faulty components and various operations of protective relays and circuit breakers. Additionally, to enhance problem-solving efficiency under current equipment limitations, the symmetric equivalent decomposition method of multi-z-rotation gate is utilized. Furthermore, the small probability characteristics of power system events is utilized to reduce the number of qubits. Simulation results based on the test system show that the proposed methods can achieve the same optimal results with a faster speed compared with the classical higher-order solver provided by D-Wave.

摘要

电力系统故障诊断对于识别故障位置和原因以及为电力调度员提供决策支持至关重要。然而,随着所涉及电力系统规模的增加,大多数经典方法存在显著的耗时、内存开销和计算复杂性问题。随着量子计算技术的快速发展,基于量子计算的组合优化方法在计算时间上已显示出优于现有方法的某些优势。在此背景下,本文提出一种基于量子计算的电力系统故障诊断方法,采用量子近似优化算法。该方法通过使用伊辛模型将故障诊断问题重新表述为哈密顿量,完全保留了故障元件与保护继电器和断路器各种操作之间的耦合关系。此外,为了在当前设备限制下提高问题解决效率,采用了多z旋转门的对称等效分解方法。此外,利用电力系统事件的小概率特性来减少量子比特数。基于测试系统的仿真结果表明,与D-Wave提供的经典高阶求解器相比,所提方法能够以更快的速度实现相同的最优结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2884/11266437/e3728d81770b/41598_2024_67922_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验