Suppr超能文献

监测突发情况下的恢复力。

Monitoring resilience in bursts.

作者信息

Delecroix Clara, van Nes Egbert H, Scheffer Marten, van de Leemput Ingrid A

机构信息

Department of Environmental Sciences, Wageningen University and Research, Wageningen 6700 AA, The Netherlands.

出版信息

Proc Natl Acad Sci U S A. 2024 Jul 30;121(31):e2407148121. doi: 10.1073/pnas.2407148121. Epub 2024 Jul 24.

Abstract

The possibility to anticipate critical transitions through detecting loss of resilience has attracted attention in many fields. Resilience indicators rely on the mathematical concept of critical slowing down, which means that a system recovers more slowly from external perturbations when it gets closer to tipping point. This decrease in recovery rate can be reflected in rising autocorrelation and variance in data. To test whether resilience is changing, resilience indicators are often calculated using a moving window in long, continuous time series of the system. However, for some systems, it may be more feasible to collect several high-resolution time series in short periods of time, i.e., in bursts. Resilience indicators can then be calculated to detect a change of resilience between such bursts. Here, we compare the performance of both methods using simulated data and showcase the possible use of bursts in a case study using mood data to anticipate depression in a patient. With the same number of data points, the burst approach outperformed the moving window method, suggesting that it is possible to downsample the continuous time series and still signal an upcoming transition. We suggest guidelines to design an optimal sampling strategy. Our results imply that using bursts of data instead of continuous time series may improve the capacity to detect changes in resilience. This method is promising for a variety of fields, such as human health, epidemiology, or ecology, where continuous monitoring can be costly or unfeasible.

摘要

通过检测恢复力的丧失来预测关键转变的可能性在许多领域都引起了关注。恢复力指标依赖于临界减缓的数学概念,这意味着当系统接近临界点时,它从外部扰动中恢复的速度会更慢。恢复率的这种下降可以反映在数据中自相关和方差的增加上。为了测试恢复力是否正在变化,恢复力指标通常在系统的长连续时间序列中使用移动窗口来计算。然而,对于某些系统,在短时间内收集多个高分辨率时间序列,即短脉冲串数据,可能更可行。然后可以计算恢复力指标以检测这些短脉冲串数据之间恢复力的变化。在这里,我们使用模拟数据比较了这两种方法的性能,并在一个使用情绪数据来预测患者抑郁症的案例研究中展示了短脉冲串数据的可能用途。在数据点数量相同的情况下,短脉冲串方法优于移动窗口方法,这表明有可能对连续时间序列进行下采样,并且仍然能够发出即将发生转变的信号。我们提出了设计最佳采样策略的指导方针。我们的结果表明,使用短脉冲串数据而不是连续时间序列可能会提高检测恢复力变化的能力。这种方法在各种领域都很有前景,例如人类健康、流行病学或生态学,在这些领域中连续监测可能成本高昂或不可行。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5511/11295040/1a885679f25a/pnas.2407148121fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验