Institute of Oceanology, Chinese Academy of Science, Qingdao, China.
Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Laoshan Laboratory, Qingdao, China.
Sci Adv. 2024 Jul 26;10(30):eadn3053. doi: 10.1126/sciadv.adn3053. Epub 2024 Jul 24.
Vestimentiferan tubeworms that thrive in deep-sea chemosynthetic ecosystems rely on a single species of sulfide-oxidizing gammaproteobacterial endosymbionts housed in a specialized symbiotic organ called trophosome as their primary carbon source. While this simple symbiosis is remarkably productive, the host-symbiont molecular interactions remain unelucidated. Here, we applied an approach for deep-sea in situ single-cell fixation in a cold-seep tubeworm, . Single-cell RNA sequencing analysis and further molecular characterizations of both the trophosome and endosymbiont indicate that the tubeworm maintains two distinct metabolic "microniches" in the trophosome by controlling the availability of chemosynthetic gases and metabolites, resulting in oxygenated and hypoxic conditions. The endosymbionts in the oxygenated niche actively conduct autotrophic carbon fixation and are digested for nutrients, while those in the hypoxic niche conduct anaerobic denitrification, which helps the host remove ammonia waste. Our study provides insights into the molecular interactions between animals and their symbiotic microbes.
在深海化能合成生态系统中茁壮成长的鞘形蠕虫依赖于一种硫氧化γ变形菌共生体,共生体被安置在一种被称为营养体的特殊共生器官中,作为其主要的碳源。虽然这种简单的共生关系非常高效,但宿主-共生体的分子相互作用仍未阐明。在这里,我们应用了一种在冷渗管蠕虫中进行深海原位单细胞固定的方法。单细胞 RNA 测序分析和对营养体和内共生体的进一步分子特征分析表明,管蠕虫通过控制化能合成气体和代谢物的可用性,在营养体中维持两个不同的代谢“微生境”,从而导致氧化和缺氧条件。在富氧小生境中的内共生体积极进行自养碳固定和营养物质的消化,而在缺氧小生境中的内共生体则进行无氧脱氮作用,这有助于宿主去除氨废物。我们的研究为动物与其共生微生物之间的分子相互作用提供了新的见解。