Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
J Hazard Mater. 2024 Sep 15;477:135260. doi: 10.1016/j.jhazmat.2024.135260. Epub 2024 Jul 18.
Biodegradation, while cost-effective, is hindered by the requirement for specialized microorganisms and co-contaminants. Innovative biological technologies like the microbially driven Fenton reaction, hold promise for enhancing degradation efficiency. However, the intricate biochemical processes and essential steps for effective degradation in such systems have remained unclear. In this study, we harnessed the potential of the microbially driven Fenton reaction by employing Shewanella oneidensis MR-1 (MR-1). Our approach showcased remarkable efficacy in degrading a range of contaminants, including sulfadimethoxine (SDM), 4,4'-dibromodiphenyl ether (BDE-15) and atrazine (ATZ). Using SDM as a model contaminant of emergent contaminants (ECs), we unveiled that biodegradation relied on the generation of hydroxyl radicals (•OH) and involvement of oxidoreductases. Transcriptomic analysis shed light on the pivotal components of extracellular electron transfer (EET) during both anaerobic and aerobic periods. The presence of reactive oxidizing species induced cellular damage and impeded DNA repair, thereby affecting the Mtr pathway of EET. Moreover, the formation of vivianite hindered SDM degradation, underscoring the necessity of maintaining iron ions in the solution to ensure sustainable and efficient degradation. Overall, this study offers valuable insights into microbial technique for ECs degradation, providing a comprehensive understanding of degradation mechanisms during aerobic/anaerobic cycling.
生物降解虽然具有成本效益,但受到需要专门微生物和共污染物的限制。像微生物驱动的芬顿反应这样的创新生物技术有望提高降解效率。然而,在这些系统中,有效降解的复杂生化过程和必要步骤仍然不清楚。在这项研究中,我们利用微生物驱动的芬顿反应的潜力,使用 Shewanella oneidensis MR-1 (MR-1)。我们的方法展示了在降解一系列污染物方面的显著效果,包括磺胺二甲氧嘧啶 (SDM)、4,4'-二溴二苯醚 (BDE-15) 和莠去津 (ATZ)。我们使用 SDM 作为新兴污染物 (ECs) 的模型污染物,揭示了生物降解依赖于羟基自由基 (•OH) 的产生和氧化还原酶的参与。转录组分析揭示了在厌氧和需氧期细胞外电子转移 (EET) 过程中的关键成分。活性氧化物质的存在诱导了细胞损伤并阻碍了 DNA 修复,从而影响了 EET 的 Mtr 途径。此外,磷铁矿的形成阻碍了 SDM 的降解,这表明需要在溶液中保持铁离子以确保可持续和有效的降解。总的来说,这项研究为 ECs 降解的微生物技术提供了有价值的见解,全面了解了好氧/厌氧循环过程中的降解机制。