Department of Clinical Pharmacology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology and Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China; Department of Clinical Pharmacy, Jiaozuo People's Hospital, Jiaozuo 454000, China.
Department of Clinical Pharmacology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology and Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China.
J Adv Res. 2024 Sep;63:73-90. doi: 10.1016/j.jare.2024.07.018. Epub 2024 Jul 22.
Our previous work reveals a critical role of activation of neuronal Alox5 in exacerbating brain injury post seizures. However, whether neuronal Alox5 impacts the pathological process of epilepsy remains unknown.
To prove the feasibility of neuron-specific deletion of Alox5 via CRISPR-Cas9 in the blockade of seizure onset and epileptic progression.
Here, we employed a Clustered regularly interspaced short-palindromic repeat-associated proteins 9 system (CRISPR/Cas9) system delivered by adeno-associated virus (AAV) to specifically delete neuronal Alox5 gene in the hippocampus to explore its therapeutic potential in various epilepsy mouse models and possible mechanisms.
Neuronal depletion of Alox5 was successfully achieved in the brain. AAV delivery of single guide RNA of Alox5 in hippocampus resulted in reducing seizure severity, delaying epileptic progression and improving epilepsy-associated neuropsychiatric comorbidities especially anxiety, cognitive deficit and autistic-like behaviors in pilocarpine- and kainic acid-induced temporal lobe epilepsy (TLE) models. In addition, neuronal Alox5 deletion also reversed neuron loss, neurodegeneration, astrogliosis and mossy fiber sprouting in TLE model. Moreover, a battery of tests including analysis of routine blood test, hepatic function, renal function, routine urine test and inflammatory factors demonstrated no noticeable toxic effect, suggesting that Alox5 deletion possesses the satisfactory biosafety. Mechanistically, the anti-epileptic effect of Alox5 deletion might be associated with reduction of glutamate level to restore excitatory/inhibitory balance by reducing CAMKII-mediated phosphorylation of Syn I.
Our findings showed the translational potential of AAV-mediated delivery of CRISPR-Cas9 system including neuronal Alox5 gene for an alternative promising therapeutic approach to treat epilepsy.
我们之前的工作揭示了神经元 Alox5 的激活在加剧癫痫发作后的脑损伤中起着关键作用。然而,神经元 Alox5 是否会影响癫痫的病理过程尚不清楚。
通过 CRISPR-Cas9 在阻止癫痫发作和癫痫进展中证明神经元特异性缺失 Alox5 的可行性。
在这里,我们使用腺相关病毒 (AAV) 递送的成簇规律间隔短回文重复相关蛋白 9 系统 (CRISPR/Cas9) 系统特异性地在海马体中缺失神经元 Alox5 基因,以探索其在各种癫痫小鼠模型中的治疗潜力及其可能的机制。
成功地在大脑中实现了神经元 Alox5 的缺失。AAV 在海马体中递送 Alox5 的单指导 RNA 导致癫痫发作严重程度降低、癫痫进展延迟以及改善与癫痫相关的神经精神合并症,特别是匹罗卡品和海人酸诱导的颞叶癫痫 (TLE) 模型中的焦虑、认知缺陷和自闭症样行为。此外,神经元 Alox5 的缺失还逆转了 TLE 模型中的神经元丢失、神经退行性变、星形胶质细胞增生和苔藓纤维发芽。此外,一系列测试,包括常规血液检查、肝功能、肾功能、常规尿液检查和炎症因子的分析,表明没有明显的毒性作用,提示 Alox5 缺失具有令人满意的生物安全性。从机制上讲,Alox5 缺失的抗癫痫作用可能与通过减少 CAMKII 介导的 Syn I 磷酸化来降低谷氨酸水平以恢复兴奋/抑制平衡有关。
我们的研究结果表明,AAV 介导的 CRISPR-Cas9 系统包括神经元 Alox5 基因的递送具有转化潜力,为治疗癫痫提供了一种有前途的替代治疗方法。