文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

资源:一个经过整理的大脑相关功能基因集数据库(Brain.GMT)。

Resource: A curated database of brain-related functional gene sets (Brain.GMT).

作者信息

Hagenauer Megan H, Sannah Yusra, Hebda-Bauer Elaine K, Rhoads Cosette, O'Connor Angela M, Flandreau Elizabeth, Watson Stanley J, Akil Huda

机构信息

Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA.

National Institutes of Health, Bethesda, MD 20892, USA.

出版信息

MethodsX. 2024 Jun 24;13:102788. doi: 10.1016/j.mex.2024.102788. eCollection 2024 Dec.


DOI:10.1016/j.mex.2024.102788
PMID:39049932
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11267058/
Abstract

Transcriptional profiling has become a common tool for investigating the nervous system. During analysis, differential expression results are often compared to functional ontology databases, which contain curated gene sets representing well-studied pathways. This dependence can cause neuroscience studies to be interpreted in terms of functional pathways documented in better studied tissues (e.g. liver) and topics (e.g. cancer), and systematically emphasizes well-studied genes, leaving other findings in the obscurity of the brain "ignorome". To address this issue, we compiled a curated database of 918 gene sets related to nervous system function, tissue, and cell types ("Brain.GMT") that can be used within common analysis pipelines () to interpret results from three species (rat, mouse, human). Brain.GMT includes brain-related gene sets curated from the Molecular Signatures Database (MSigDB) and extracted from public databases (GeneWeaver, Gemma, DropViz, BrainInABlender, HippoSeq) and published studies containing differential expression results. Although Brain.GMT is still undergoing development and currently only represents a fraction of available brain gene sets, "brain ignorome" genes are already better represented than in traditional Gene Ontology databases. Moreover, Brain.GMT substantially improves the quantity and quality of gene sets identified as enriched with differential expression in neuroscience studies, enhancing interpretation. •We compiled a curated database of 918 gene sets related to nervous system function, tissue, and cell types ("Brain.GMT").•Brain.GMT can be used within common analysis pipelines () to interpret neuroscience transcriptional profiling results from three species (rat, mouse, human).•Although Brain.GMT is still undergoing development, it substantially improved the interpretation of differential expression results within our initial use cases.

摘要

转录谱分析已成为研究神经系统的常用工具。在分析过程中,差异表达结果通常会与功能本体数据库进行比较,这些数据库包含经过整理的基因集,代表了研究充分的通路。这种依赖可能导致神经科学研究依据在研究更充分的组织(如肝脏)和主题(如癌症)中记录的功能通路来进行解释,并系统性地强调研究充分的基因,而将其他发现置于大脑“未知基因组”的模糊状态。为了解决这个问题,我们编制了一个包含918个与神经系统功能、组织和细胞类型相关的基因集的数据库(“Brain.GMT”),该数据库可用于常见的分析流程()中,以解释来自三个物种(大鼠、小鼠、人类)的结果。Brain.GMT包括从分子特征数据库(MSigDB)中整理并从公共数据库(GeneWeaver、Gemma、DropViz、BrainInABlender、HippoSeq)以及包含差异表达结果的已发表研究中提取的与大脑相关的基因集。尽管Brain.GMT仍在开发中,目前仅代表可用大脑基因集的一部分,但“大脑未知基因组”中的基因已比传统基因本体数据库中有更好的体现。此外,Brain.GMT显著提高了在神经科学研究中被鉴定为差异表达富集的基因集的数量和质量,增强了结果的解释力。 •我们编制了一个包含918个与神经系统功能、组织和细胞类型相关的基因集的数据库(“Brain.GMT”)。 •Brain.GMT可用于常见的分析流程()中,以解释来自三个物种(大鼠、小鼠、人类)的神经科学转录谱分析结果。 •尽管Brain.GMT仍在开发中,但在我们最初的应用案例中,它显著改善了差异表达结果的解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/477a/11267058/4d8a5389c045/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/477a/11267058/ac56e1c1458e/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/477a/11267058/4d8a5389c045/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/477a/11267058/ac56e1c1458e/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/477a/11267058/4d8a5389c045/gr1.jpg

相似文献

[1]
Resource: A curated database of brain-related functional gene sets (Brain.GMT).

MethodsX. 2024-6-24

[2]
Resource: A Curated Database of Brain-Related Functional Gene Sets (Brain.GMT).

bioRxiv. 2024-4-10

[3]
Gene expression analysis in clear cell renal cell carcinoma using gene set enrichment analysis for biostatistical management.

BJU Int. 2011-3-16

[4]
Assessment of Gene Set Enrichment Analysis using curated RNA-seq-based benchmarks.

PLoS One. 2024

[5]
Muscle Gene Sets: a versatile methodological aid to functional genomics in the neuromuscular field.

Skelet Muscle. 2019-5-3

[6]
ADAGE signature analysis: differential expression analysis with data-defined gene sets.

BMC Bioinformatics. 2017-11-22

[7]
DNMT1 is associated with cell cycle and DNA replication gene sets in diffuse large B-cell lymphoma.

Pathol Res Pract. 2017-10-9

[8]
GeneSigDB: a manually curated database and resource for analysis of gene expression signatures.

Nucleic Acids Res. 2011-11-21

[9]
Transcriptomics of cortical gray matter thickness decline during normal aging.

Neuroimage. 2013-5-24

[10]
Systems biology approach to identify gene network signatures for colorectal cancer.

Front Genet. 2012-5-17

引用本文的文献

[1]
A Meta-Analysis of the Effects of Acute Sleep Deprivation on the Cortical Transcriptome in Rodent Models.

bioRxiv. 2025-8-2

[2]
Effect of Chronic Stress on Whole Blood Transcriptome: A Meta-Analysis of Publicly Available Datasets from Rodent Models.

bioRxiv. 2025-6-1

[3]
Novel Gene-Informed Regional Brain Targets for Clinical Screening for Major Depression.

Neurol Int. 2025-6-19

[4]
A Meta-Analysis of the Effects of Early Life Stress on the Prefrontal Cortex Transcriptome Reveals Long-Term Downregulation of Myelin-Related Gene Expression.

Brain Behav. 2025-6

[5]
Bioenergetic-related gene expression in the hippocampus predicts internalizing vs. externalizing behavior in an animal model of temperament.

Front Mol Neurosci. 2025-3-4

[6]
Brain aging shows nonlinear transitions, suggesting a midlife "critical window" for metabolic intervention.

Proc Natl Acad Sci U S A. 2025-3-11

[7]
GBMPurity: A Machine Learning Tool for Estimating Glioblastoma Tumour Purity from Bulk RNA-seq Data.

Neuro Oncol. 2025-2-1

[8]
A meta-analysis of the effects of early life stress on the prefrontal cortex transcriptome suggests long-term effects on myelin.

bioRxiv. 2024-11-24

本文引用的文献

[1]
Adolescent environmental enrichment induces social resilience and alters neural gene expression in a selectively bred rodent model with anxious phenotype.

Neurobiol Stress. 2024-5-30

[2]
Extending support for mouse data in the Molecular Signatures Database (MSigDB).

Nat Methods. 2023-11

[3]
Gene Set Knowledge Discovery with Enrichr.

Curr Protoc. 2021-3

[4]
Curation of over 10 000 transcriptomic studies to enable data reuse.

Database (Oxford). 2021-2-18

[5]
Genetic Liability for Internalizing Versus Externalizing Behavior Manifests in the Developing and Adult Hippocampus: Insight From a Meta-analysis of Transcriptional Profiling Studies in a Selectively Bred Rat Model.

Biol Psychiatry. 2021-2-15

[6]
Early life stress alters transcriptomic patterning across reward circuitry in male and female mice.

Nat Commun. 2019-11-8

[7]
The reactome pathway knowledgebase.

Nucleic Acids Res. 2020-1-8

[8]
Predictability of human differential gene expression.

Proc Natl Acad Sci U S A. 2019-3-7

[9]
Mouse Genome Database (MGD) 2019.

Nucleic Acids Res. 2019-1-8

[10]
Molecular Diversity and Specializations among the Cells of the Adult Mouse Brain.

Cell. 2018-8-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索