Suppr超能文献

脓毒症中泛凋亡相关基因特征的机器学习筛选与验证

Machine Learning Screening and Validation of PANoptosis-Related Gene Signatures in Sepsis.

作者信息

Xu Jingjing, Zhu Mingyu, Luo Pengxiang, Gong Yuanqi

机构信息

Department of Intensive Care Unit, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China.

Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.

出版信息

J Inflamm Res. 2024 Jul 17;17:4765-4780. doi: 10.2147/JIR.S461809. eCollection 2024.

Abstract

BACKGROUND

Sepsis is a syndrome marked by life-threatening organ dysfunction and a disrupted host immune response to infection. PANoptosis is a recent conceptual development, which emphasises the interconnectedness among multiple programmed cell deaths in various diseases. Nevertheless, the role of PANoptosis in sepsis is still unclear.

METHODS

We utilized the GSE65682 dataset to identify PANoptosis-related genes (PRGs) and associated immune characteristics in sepsis, classified sepsis samples based on PRGs using the ConsensusClusterPlus method and applied the Weighted Gene Co-Expression Network Analysis (WGCNA) algorithm to identify cluster-specific hub genes. Based on PANoptosis -specific DEGs, we compared results from machine learning models and the best-performing model was selected. Predictive efficiency was validated through external dataset, nomogram, survival analysis, quantitative real-time PCR, and western blot.

RESULTS

The expression levels of PRGs were generally dysregulated in sepsis patients compared with normal samples, and higher PRGs expression correlated with increased immune cell infiltration. In addition, two distinct PANoptosis-related clusters were defined, and functional analysis indicated that DEGs associated with these clusters were primarily linked to immune-related pathways. The SVM model was selected as best-performing model, with lower residuals and the highest area under the curve (AUC = 0.967), which was then validated in an external dataset (AUC = 0.989) and through in vivo experiments. Additional validation through nomogram and survival analysis further confirmed its substantial predictive efficacy.

CONCLUSION

Our findings exposed the intricate association between PANoptosis and sepsis, offering important insights on sepsis diagnosis and potential therapeutic targets.

摘要

背景

脓毒症是一种以危及生命的器官功能障碍和宿主对感染的免疫反应紊乱为特征的综合征。全程序细胞死亡(PANoptosis)是最近提出的一个概念,强调多种程序性细胞死亡在各种疾病中的相互联系。然而,PANoptosis在脓毒症中的作用仍不清楚。

方法

我们利用GSE65682数据集来识别脓毒症中与PANoptosis相关的基因(PRGs)和相关免疫特征,使用ConsensusClusterPlus方法基于PRGs对脓毒症样本进行分类,并应用加权基因共表达网络分析(WGCNA)算法来识别特定簇的核心基因。基于PANoptosis特异性差异表达基因(DEGs),我们比较了机器学习模型的结果,并选择了表现最佳的模型。通过外部数据集、列线图、生存分析、定量实时PCR和蛋白质印迹法验证预测效率。

结果

与正常样本相比,脓毒症患者中PRGs的表达水平普遍失调,PRGs表达水平越高,免疫细胞浸润增加。此外,定义了两个不同的与PANoptosis相关的簇,功能分析表明与这些簇相关的DEGs主要与免疫相关途径有关。支持向量机(SVM)模型被选为表现最佳的模型,具有较低的残差和最高的曲线下面积(AUC = 0.967),随后在外部数据集中(AUC = 0.989)和通过体内实验进行了验证。通过列线图和生存分析的进一步验证进一步证实了其显著的预测效力。

结论

我们的研究结果揭示了PANoptosis与脓毒症之间的复杂关联,为脓毒症的诊断和潜在治疗靶点提供了重要见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07cc/11268777/61e0815e829d/JIR-17-4765-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验