Suppr超能文献

单细胞 RNA-seq 和芯片数据的综合分析揭示了脓毒症中与 PANoptosis 相关的基因。

Integrated analysis of single-cell RNA-seq and chipset data unravels PANoptosis-related genes in sepsis.

机构信息

Department of Intensive Care Unit, The First Affiliated Hospital of Jiangxi Medical College, Shangrao, Jiangxi, China.

Department of Clinical Medicine, Jiangxi Medical College, Shangrao, Jiangxi, China.

出版信息

Front Immunol. 2024 Jan 3;14:1247131. doi: 10.3389/fimmu.2023.1247131. eCollection 2023.

Abstract

BACKGROUND

The poor prognosis of sepsis warrants the investigation of biomarkers for predicting the outcome. Several studies have indicated that PANoptosis exerts a critical role in tumor initiation and development. Nevertheless, the role of PANoptosis in sepsis has not been fully elucidated.

METHODS

We obtained Sepsis samples and scRNA-seq data from the GEO database. PANoptosis-related genes were subjected to consensus clustering and functional enrichment analysis, followed by identification of differentially expressed genes and calculation of the PANoptosis score. A PANoptosis-based prognostic model was developed. experiments were performed to verify distinct PANoptosis-related genes. An external scRNA-seq dataset was used to verify cellular localization.

RESULTS

Unsupervised clustering analysis using 16 PANoptosis-related genes identified three subtypes of sepsis. Kaplan-Meier analysis showed significant differences in patient survival among the subtypes, with different immune infiltration levels. Differential analysis of the subtypes identified 48 DEGs. Boruta algorithm PCA analysis identified 16 DEGs as PANoptosis-related signature genes. We developed PANscore based on these signature genes, which can distinguish different PANoptosis and clinical characteristics and may serve as a potential biomarker. Single-cell sequencing analysis identified six cell types, with high PANscore clustering relatively in B cells, and low PANscore in CD16+ and CD14+ monocytes and Megakaryocyte progenitors. ZBP1, XAF1, IFI44L, SOCS1, and PARP14 were relatively higher in cells with high PANscore.

CONCLUSION

We developed a machine learning based Boruta algorithm for profiling PANoptosis related subgroups with in predicting survival and clinical features in the sepsis.

摘要

背景

脓毒症预后不良,因此需要寻找预测结局的生物标志物。已有研究表明,PANoptosis 在肿瘤的发生和发展中发挥关键作用。然而,PANoptosis 在脓毒症中的作用尚未完全阐明。

方法

我们从 GEO 数据库中获取了脓毒症样本和 scRNA-seq 数据。对 PANoptosis 相关基因进行共识聚类和功能富集分析,然后识别差异表达基因并计算 PANoptosis 评分。建立基于 PANoptosis 的预后模型。进行了验证不同的 PANoptosis 相关基因的实验。使用外部 scRNA-seq 数据集来验证细胞定位。

结果

使用 16 个 PANoptosis 相关基因进行无监督聚类分析,将脓毒症分为三个亚型。Kaplan-Meier 分析显示,各亚型患者的生存存在显著差异,且免疫浸润水平不同。对各亚型进行差异分析,共鉴定出 48 个 DEGs。Boruta 算法 PCA 分析确定了 16 个 DEGs 为 PANoptosis 相关特征基因。我们基于这些特征基因开发了 PANscore,该评分可区分不同的 PANoptosis 和临床特征,可能作为一种潜在的生物标志物。单细胞测序分析鉴定出 6 种细胞类型,高 PANscore 聚类的细胞中 B 细胞较多,而 CD16+和 CD14+单核细胞以及巨核细胞前体细胞中 PANscore 较低。高 PANscore 细胞中 ZBP1、XAF1、IFI44L、SOCS1 和 PARP14 相对较高。

结论

我们开发了一种基于机器学习的 Boruta 算法,用于对 PANoptosis 相关亚组进行分析,以预测脓毒症患者的生存和临床特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54ef/10795179/5a71722aad1e/fimmu-14-1247131-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验