Mezzadri Matteo, Chiesa Alessandro, Lepori Luca, Carretta Stefano
Università di Parma, Dipartimento di Scienze Matematiche, Fisiche e Informatiche, I-43124 Parma, Italy.
Gruppo Collegato di Parma, INFN-Sezione Milano-Bicocca, I-43124 Parma, Italy.
Mater Horiz. 2024 Oct 14;11(20):4961-4969. doi: 10.1039/d4mh00454j.
We show that molecular spins represent ideal materials to realize a fault-tolerant quantum computer, in which all quantum operations include protection against leading (dephasing) errors. This is achieved by pursuing a qudit approach, in which logical error-corrected qubits are encoded in a single multi-level molecule (a qudit) and not in a large collection of two-level systems, as in standard codes. By preventing such an explosion of resources, this emerging way of thinking about quantum error correction makes its actual implementation using molecular spins much closer. We show how to perform all quantum computing operations (logical gates, corrections and measurements) without propagating errors. We achieve a quasi-exponential error correction with only linear qudit size growth, a higher efficiency than the standard approach based on stabilizer codes and concatenation.
我们证明,分子自旋是实现容错量子计算机的理想材料,其中所有量子操作都包含针对主要(退相)错误的保护。这是通过采用量子位方法实现的,在这种方法中,逻辑纠错量子比特被编码在单个多能级分子(一个量子位)中,而不像标准编码那样编码在大量的二能级系统中。通过避免这种资源的激增,这种新兴的量子纠错思维方式使得使用分子自旋进行实际实现的可能性大大增加。我们展示了如何执行所有量子计算操作(逻辑门、纠错和测量)而不传播错误。我们仅通过线性增长的量子位大小实现了准指数纠错,其效率高于基于稳定器码和级联的标准方法。