Cohen Lawrence Z, Kim Isaac H, Bartlett Stephen D, Brown Benjamin J
Centre for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia.
Department of Computer Science, UC Davis, Davis, CA 95616, USA.
Sci Adv. 2022 May 20;8(20):eabn1717. doi: 10.1126/sciadv.abn1717.
Vast numbers of qubits will be needed for large-scale quantum computing because of the overheads associated with error correction. We present a scheme for low-overhead fault-tolerant quantum computation based on quantum low-density parity-check (LDPC) codes, where long-range interactions enable many logical qubits to be encoded with a modest number of physical qubits. In our approach, logic gates operate via logical Pauli measurements that preserve both the protection of the LDPC codes and the low overheads in terms of the required number of additional qubits. Compared with surface codes with the same code distance, we estimate order-of-magnitude improvements in the overheads for processing around 100 logical qubits using this approach. Given the high thresholds demonstrated by LDPC codes, our estimates suggest that fault-tolerant quantum computation at this scale may be achievable with a few thousand physical qubits at comparable error rates to what is needed for current approaches.
由于与纠错相关的开销,大规模量子计算需要大量的量子比特。我们提出了一种基于量子低密度奇偶校验(LDPC)码的低开销容错量子计算方案,其中长程相互作用使得用适量的物理量子比特就能编码许多逻辑量子比特。在我们的方法中,逻辑门通过逻辑泡利测量来操作,这既保留了LDPC码的保护特性,又在所需额外量子比特数量方面保持了低开销。与具有相同码距的表面码相比,我们估计使用这种方法处理大约100个逻辑量子比特时,开销会有数量级的改善。鉴于LDPC码所展示的高阈值,我们的估计表明,在与当前方法所需相当的错误率下,使用几千个物理量子比特可能实现这种规模的容错量子计算。