Suppr超能文献

FeNNol:一个用于构建力场增强神经网络势的高效灵活库。

FeNNol: An efficient and flexible library for building force-field-enhanced neural network potentials.

作者信息

Plé Thomas, Adjoua Olivier, Lagardère Louis, Piquemal Jean-Philip

机构信息

Sorbonne Université, LCT, UMR 7616 CNRS, 75005 Paris, France.

出版信息

J Chem Phys. 2024 Jul 28;161(4). doi: 10.1063/5.0217688.

Abstract

Neural network interatomic potentials (NNPs) have recently proven to be powerful tools to accurately model complex molecular systems while bypassing the high numerical cost of ab initio molecular dynamics simulations. In recent years, numerous advances in model architectures as well as the development of hybrid models combining machine-learning (ML) with more traditional, physically motivated, force-field interactions have considerably increased the design space of ML potentials. In this paper, we present FeNNol, a new library for building, training, and running force-field-enhanced neural network potentials. It provides a flexible and modular system for building hybrid models, allowing us to easily combine state-of-the-art embeddings with ML-parameterized physical interaction terms without the need for explicit programming. Furthermore, FeNNol leverages the automatic differentiation and just-in-time compilation features of the Jax Python library to enable fast evaluation of NNPs, shrinking the performance gap between ML potentials and standard force-fields. This is demonstrated with the popular ANI-2x model reaching simulation speeds nearly on par with the AMOEBA polarizable force-field on commodity GPUs (graphics processing units). We hope that FeNNol will facilitate the development and application of new hybrid NNP architectures for a wide range of molecular simulation problems.

摘要

神经网络原子间势(NNPs)最近已被证明是强大的工具,可在绕过从头算分子动力学模拟的高数值成本的同时,精确模拟复杂分子系统。近年来,模型架构的众多进展以及将机器学习(ML)与更传统的、基于物理动机的力场相互作用相结合的混合模型的开发,极大地扩展了ML势的设计空间。在本文中,我们展示了FeNNol,这是一个用于构建、训练和运行力场增强神经网络势的新库。它提供了一个灵活且模块化的系统来构建混合模型,使我们能够轻松地将最先进的嵌入与ML参数化的物理相互作用项相结合,而无需显式编程。此外,FeNNol利用Jax Python库的自动微分和即时编译功能,实现对NNPs的快速评估,缩小了ML势与标准力场之间的性能差距。这在流行的ANI - 2x模型中得到了证明,该模型在商用GPU(图形处理单元)上的模拟速度几乎与AMOEBA可极化力场相当。我们希望FeNNol将促进针对广泛分子模拟问题的新型混合NNP架构的开发和应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验