Suppr超能文献

将神经网络整合到AMOEBA可极化力场中。

Incorporating Neural Networks into the AMOEBA Polarizable Force Field.

作者信息

Wang Yanxing, Inizan Théo Jaffrelot, Liu Chengwen, Piquemal Jean-Philip, Ren Pengyu

机构信息

Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States.

Sorbonne Université, Laboratoire de Chimie Théorique, UMR 7616 CNRS, Paris 75005, France.

出版信息

J Phys Chem B. 2024 Mar 14;128(10):2381-2388. doi: 10.1021/acs.jpcb.3c08166. Epub 2024 Mar 6.

Abstract

Neural network potentials (NNPs) offer significant promise to bridge the gap between the accuracy of quantum mechanics and the efficiency of molecular mechanics in molecular simulation. Most NNPs rely on the locality assumption that ensures the model's transferability and scalability and thus lack the treatment of long-range interactions, which are essential for molecular systems in the condensed phase. Here we present an integrated hybrid model, AMOEBA+NN, which combines the AMOEBA potential for the short- and long-range noncovalent atomic interactions and an NNP to capture the remaining local covalent contributions. The AMOEBA+NN model was trained on the conformational energy of the ANI-1x data set and tested on several external data sets ranging from small molecules to tetrapeptides. The hybrid model demonstrated substantial improvements over the baseline models in term of accuracy as the molecule size increased, suggesting its potential as a next-generation approach for chemically accurate molecular simulations.

摘要

神经网络势(NNP)有望弥合分子模拟中量子力学精度与分子力学效率之间的差距。大多数神经网络势依赖局部性假设,该假设确保了模型的可转移性和可扩展性,因此缺乏对长程相互作用的处理,而长程相互作用对于凝聚相中的分子系统至关重要。在此,我们提出了一种集成混合模型AMOEBA+NN,它结合了用于短程和长程非共价原子相互作用的AMOEBA势以及一个神经网络势来捕捉其余的局部共价贡献。AMOEBA+NN模型在ANI-1x数据集的构象能量上进行了训练,并在从小分子到四肽的几个外部数据集上进行了测试。随着分子尺寸的增加,该混合模型在准确性方面相对于基线模型有显著改进,表明其作为下一代化学精确分子模拟方法的潜力。

相似文献

1
Incorporating Neural Networks into the AMOEBA Polarizable Force Field.将神经网络整合到AMOEBA可极化力场中。
J Phys Chem B. 2024 Mar 14;128(10):2381-2388. doi: 10.1021/acs.jpcb.3c08166. Epub 2024 Mar 6.
4
AMOEBA+ Classical Potential for Modeling Molecular Interactions.用于分子相互作用建模的AMOEBA+经典势
J Chem Theory Comput. 2019 Jul 9;15(7):4122-4139. doi: 10.1021/acs.jctc.9b00261. Epub 2019 Jun 11.

本文引用的文献

6
Machine Learning Interatomic Potentials and Long-Range Physics.机器学习原子间势和长程物理。
J Phys Chem A. 2023 Mar 23;127(11):2417-2431. doi: 10.1021/acs.jpca.2c06778. Epub 2023 Feb 21.
9
End-to-end differentiable construction of molecular mechanics force fields.分子力学力场的端到端可微构建
Chem Sci. 2022 Sep 8;13(41):12016-12033. doi: 10.1039/d2sc02739a. eCollection 2022 Oct 26.
10
Construction of a Deep Neural Network Energy Function for Protein Physics.构建蛋白质物理的深度神经网络能量函数。
J Chem Theory Comput. 2022 Sep 13;18(9):5649-5658. doi: 10.1021/acs.jctc.2c00069. Epub 2022 Aug 8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验