Suppr超能文献

将神经网络整合到AMOEBA可极化力场中。

Incorporating Neural Networks into the AMOEBA Polarizable Force Field.

作者信息

Wang Yanxing, Inizan Théo Jaffrelot, Liu Chengwen, Piquemal Jean-Philip, Ren Pengyu

机构信息

Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States.

Sorbonne Université, Laboratoire de Chimie Théorique, UMR 7616 CNRS, Paris 75005, France.

出版信息

J Phys Chem B. 2024 Mar 14;128(10):2381-2388. doi: 10.1021/acs.jpcb.3c08166. Epub 2024 Mar 6.

Abstract

Neural network potentials (NNPs) offer significant promise to bridge the gap between the accuracy of quantum mechanics and the efficiency of molecular mechanics in molecular simulation. Most NNPs rely on the locality assumption that ensures the model's transferability and scalability and thus lack the treatment of long-range interactions, which are essential for molecular systems in the condensed phase. Here we present an integrated hybrid model, AMOEBA+NN, which combines the AMOEBA potential for the short- and long-range noncovalent atomic interactions and an NNP to capture the remaining local covalent contributions. The AMOEBA+NN model was trained on the conformational energy of the ANI-1x data set and tested on several external data sets ranging from small molecules to tetrapeptides. The hybrid model demonstrated substantial improvements over the baseline models in term of accuracy as the molecule size increased, suggesting its potential as a next-generation approach for chemically accurate molecular simulations.

摘要

神经网络势(NNP)有望弥合分子模拟中量子力学精度与分子力学效率之间的差距。大多数神经网络势依赖局部性假设,该假设确保了模型的可转移性和可扩展性,因此缺乏对长程相互作用的处理,而长程相互作用对于凝聚相中的分子系统至关重要。在此,我们提出了一种集成混合模型AMOEBA+NN,它结合了用于短程和长程非共价原子相互作用的AMOEBA势以及一个神经网络势来捕捉其余的局部共价贡献。AMOEBA+NN模型在ANI-1x数据集的构象能量上进行了训练,并在从小分子到四肽的几个外部数据集上进行了测试。随着分子尺寸的增加,该混合模型在准确性方面相对于基线模型有显著改进,表明其作为下一代化学精确分子模拟方法的潜力。

相似文献

1
Incorporating Neural Networks into the AMOEBA Polarizable Force Field.
J Phys Chem B. 2024 Mar 14;128(10):2381-2388. doi: 10.1021/acs.jpcb.3c08166. Epub 2024 Mar 6.
2
Scalable hybrid deep neural networks/polarizable potentials biomolecular simulations including long-range effects.
Chem Sci. 2023 Apr 4;14(20):5438-5452. doi: 10.1039/d2sc04815a. eCollection 2023 May 24.
4
AMOEBA+ Classical Potential for Modeling Molecular Interactions.
J Chem Theory Comput. 2019 Jul 9;15(7):4122-4139. doi: 10.1021/acs.jctc.9b00261. Epub 2019 Jun 11.
5
ANI/EFP: Modeling Long-Range Interactions in ANI Neural Network with Effective Fragment Potentials.
J Chem Theory Comput. 2024 Oct 22;20(20):9138-9147. doi: 10.1021/acs.jctc.4c01052. Epub 2024 Oct 1.
6
Assessing the persistence of chalcogen bonds in solution with neural network potentials.
J Chem Phys. 2022 Apr 21;156(15):154112. doi: 10.1063/5.0085153.
7
Benchmarking Force Field and the ANI Neural Network Potentials for the Torsional Potential Energy Surface of Biaryl Drug Fragments.
J Chem Inf Model. 2020 Dec 28;60(12):6258-6268. doi: 10.1021/acs.jcim.0c00904. Epub 2020 Dec 2.
8
The Polarizable Atomic Multipole-based AMOEBA Force Field for Proteins.
J Chem Theory Comput. 2013;9(9):4046-4063. doi: 10.1021/ct4003702.
9
Accurate Host-Guest Binding Free Energies Using the AMOEBA Polarizable Force Field.
J Chem Inf Model. 2023 May 8;63(9):2769-2782. doi: 10.1021/acs.jcim.3c00155. Epub 2023 Apr 19.
10
Improving Condensed-Phase Water Dynamics with Explicit Nuclear Quantum Effects: The Polarizable Q-AMOEBA Force Field.
J Phys Chem B. 2022 Nov 3;126(43):8813-8826. doi: 10.1021/acs.jpcb.2c04454. Epub 2022 Oct 21.

引用本文的文献

1
Accurate Free Energy Calculation via Multiscale Simulations Driven by Hybrid Machine Learning and Molecular Mechanics Potentials.
J Chem Theory Comput. 2025 Jul 22;21(14):6979-6987. doi: 10.1021/acs.jctc.5c00598. Epub 2025 Jul 4.
2
TinkerModeller: An Efficient Tool for Building Biological Systems in Tinker Simulations.
J Chem Theory Comput. 2025 Mar 11;21(5):2712-2722. doi: 10.1021/acs.jctc.4c01463. Epub 2025 Feb 25.

本文引用的文献

1
Hybrid classical/machine-learning force fields for the accurate description of molecular condensed-phase systems.
Chem Sci. 2023 Oct 31;14(44):12661-12675. doi: 10.1039/d3sc04317g. eCollection 2023 Nov 15.
3
Combining Force Fields and Neural Networks for an Accurate Representation of Chemically Diverse Molecular Interactions.
J Am Chem Soc. 2023 Nov 1;145(43):23620-23629. doi: 10.1021/jacs.3c07628. Epub 2023 Oct 19.
4
NNP/MM: Accelerating Molecular Dynamics Simulations with Machine Learning Potentials and Molecular Mechanics.
J Chem Inf Model. 2023 Sep 25;63(18):5701-5708. doi: 10.1021/acs.jcim.3c00773. Epub 2023 Sep 11.
5
Scalable hybrid deep neural networks/polarizable potentials biomolecular simulations including long-range effects.
Chem Sci. 2023 Apr 4;14(20):5438-5452. doi: 10.1039/d2sc04815a. eCollection 2023 May 24.
6
Machine Learning Interatomic Potentials and Long-Range Physics.
J Phys Chem A. 2023 Mar 23;127(11):2417-2431. doi: 10.1021/acs.jpca.2c06778. Epub 2023 Feb 21.
7
SPICE, A Dataset of Drug-like Molecules and Peptides for Training Machine Learning Potentials.
Sci Data. 2023 Jan 4;10(1):11. doi: 10.1038/s41597-022-01882-6.
8
An Efficient Approach to Large-Scale Ab Initio Conformational Energy Profiles of Small Molecules.
Molecules. 2022 Dec 5;27(23):8567. doi: 10.3390/molecules27238567.
9
End-to-end differentiable construction of molecular mechanics force fields.
Chem Sci. 2022 Sep 8;13(41):12016-12033. doi: 10.1039/d2sc02739a. eCollection 2022 Oct 26.
10
Construction of a Deep Neural Network Energy Function for Protein Physics.
J Chem Theory Comput. 2022 Sep 13;18(9):5649-5658. doi: 10.1021/acs.jctc.2c00069. Epub 2022 Aug 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验