Suppr超能文献

一种应用于芯能级光谱学的密度泛函理论/耦合簇单激发态方法的新参数化。

A new parameterization of the DFT/CIS method with applications to core-level spectroscopy.

作者信息

Mandal Aniket, Berquist Eric J, Herbert John M

机构信息

Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.

Q-Chem Inc., Pleasanton, California 94588, USA.

出版信息

J Chem Phys. 2024 Jul 28;161(4). doi: 10.1063/5.0220535.

Abstract

Time-dependent density functional theory (TD-DFT) within a restricted excitation space is an efficient means to compute core-level excitation energies using only a small subset of the occupied orbitals. However, core-to-valence excitation energies are significantly underestimated when standard exchange-correlation functionals are used, which is partly traceable to systemic issues with TD-DFT's description of Rydberg and charge-transfer excited states. To mitigate this, we have implemented an empirically modified combination of configuration interaction with single substitutions (CIS) based on Kohn-Sham orbitals, which is known as "DFT/CIS." This semi-empirical approach is well-suited for simulating x-ray near-edge spectra, as it contains sufficient exact exchange to model charge-transfer excitations yet retains DFT's low-cost description of dynamical electron correlation. Empirical corrections to the matrix elements enable semi-quantitative simulation of near-edge x-ray spectra without the need for significant a posteriori shifts; this should be useful in complex molecules and materials with multiple overlapping x-ray edges. Parameter optimization for use with a specific range-separated hybrid functional makes this a black-box method intended for both core and valence spectroscopy. Results herein demonstrate that realistic K-edge absorption and emission spectra can be obtained for second- and third-row elements and 3d transition metals, with promising results for L-edge spectra as well. DFT/CIS calculations require absolute shifts that are considerably smaller than what is typical in TD-DFT.

摘要

在受限激发空间内的含时密度泛函理论(TD-DFT)是一种仅使用一小部分占据轨道来计算芯能级激发能的有效方法。然而,当使用标准交换关联泛函时,芯到价的激发能会被显著低估,这部分可追溯到TD-DFT对里德堡和电荷转移激发态描述中的系统性问题。为了缓解这一问题,我们基于科恩-沈轨道实现了一种经验修正的单取代组态相互作用(CIS)组合,即所谓的“DFT/CIS”。这种半经验方法非常适合模拟X射线近边光谱,因为它包含足够的精确交换来模拟电荷转移激发,同时保留了DFT对动态电子关联的低成本描述。对矩阵元的经验修正能够对近边X射线光谱进行半定量模拟,而无需进行显著的后验位移;这对于具有多个重叠X射线边的复杂分子和材料应该是有用的。与特定范围分离的杂化泛函配合使用的参数优化使这成为一种适用于芯光谱和价光谱的黑箱方法。本文的结果表明,对于第二和第三周期元素以及3d过渡金属,可以获得逼真的K边吸收和发射光谱,L边光谱也有良好的结果。DFT/CIS计算所需的绝对位移比TD-DFT中的典型值小得多。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验