Ghosh Arnab, Kaur Sukhman, Verma Gulshan, Dolle Christian, Azmi Raheleh, Heissler Stefan, Eggeler Yolita M, Mondal Kunal, Mager Dario, Gupta Ankur, Korvink Jan G, Wang De-Yi, Sharma Ashutosh, Islam Monsur
IMDEA Materials Institute, Tecnogetafe, Calle Eric Kandel, 2, 28906 Getafe, Madrid Spain.
Mechanical Engineering Department, Punjab Engineering College, Sector 12, Chandigarh, 160012, India.
ACS Appl Mater Interfaces. 2024 Aug 7;16(31):40313-40325. doi: 10.1021/acsami.4c07094. Epub 2024 Jul 25.
Laser-induced graphene (LIG) has been emerging as a promising electrode material for supercapacitors due to its cost-effective and straightforward fabrication approach. However, LIG-based supercapacitors still face challenges with limited capacitance and stability. To overcome these limitations, in this work, we present a novel, cost-effective, and facile fabrication approach by integrating LIG materials with candle-soot nanoparticles. The composite electrode is fabricated by laser irradiation on a Kapton sheet to generate LIG material, followed by spray-coating with candle-soot nanoparticles and annealing. Materials characterization reveals that the annealing process enables a robust connection between the nanoparticles and the LIG materials and enhances nanoparticle graphitization. The prepared supercapacitor yields a maximum specific capacitance of 15.1 mF/cm at 0.1 mA/cm, with a maximum energy density of 2.1 μWh/cm and a power density of 50 μW/cm. Notably, the synergistic activity of candle soot and LIG surpasses the performances of previously reported LIG-based supercapacitors. Furthermore, the cyclic stability of the device demonstrates excellent capacitance retention of 80% and Coulombic efficiency of 100% over 10000 cycles.
激光诱导石墨烯(LIG)因其经济高效且简便的制备方法,已成为一种颇具前景的超级电容器电极材料。然而,基于LIG的超级电容器在电容和稳定性方面仍面临挑战。为克服这些限制,在本工作中,我们提出了一种新颖、经济高效且简便的制备方法,即将LIG材料与烛烟纳米颗粒相结合。复合电极通过在聚酰亚胺薄膜上进行激光辐照以生成LIG材料,随后用烛烟纳米颗粒进行喷雾涂覆并退火来制备。材料表征表明,退火过程能够使纳米颗粒与LIG材料之间形成稳固连接,并增强纳米颗粒的石墨化程度。所制备的超级电容器在0.1 mA/cm时的最大比电容为15.1 mF/cm²,最大能量密度为2.1 μWh/cm²,功率密度为50 μW/cm²。值得注意的是,烛烟与LIG的协同活性超过了先前报道的基于LIG的超级电容器的性能。此外,该器件的循环稳定性在10000次循环中表现出优异的电容保持率80%和库仑效率100%。