Suppr超能文献

拟合数据的传染病模型:纪念弗雷德·布劳尔的教程。

Fitting Epidemic Models to Data: A Tutorial in Memory of Fred Brauer.

机构信息

Department of Mathematics and Statistics, McMaster University, Hamilton, ON, L8S 4K1, Canada.

Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA.

出版信息

Bull Math Biol. 2024 Jul 25;86(9):109. doi: 10.1007/s11538-024-01326-9.

Abstract

Fred Brauer was an eminent mathematician who studied dynamical systems, especially differential equations. He made many contributions to mathematical epidemiology, a field that is strongly connected to data, but he always chose to avoid data analysis. Nevertheless, he recognized that fitting models to data is usually necessary when attempting to apply infectious disease transmission models to real public health problems. He was curious to know how one goes about fitting dynamical models to data, and why it can be hard. Initially in response to Fred's questions, we developed a user-friendly R package, fitode, that facilitates fitting ordinary differential equations to observed time series. Here, we use this package to provide a brief tutorial introduction to fitting compartmental epidemic models to a single observed time series. We assume that, like Fred, the reader is familiar with dynamical systems from a mathematical perspective, but has limited experience with statistical methodology or optimization techniques.

摘要

弗雷德·布劳尔是一位杰出的数学家,他研究动力系统,特别是微分方程。他在与数据密切相关的数学流行病学领域做出了许多贡献,但他始终选择避免数据分析。然而,他认识到,在尝试将传染病传播模型应用于实际公共卫生问题时,通常需要将模型拟合到数据中。他很好奇如何将动态模型拟合到数据中,以及为什么这可能很困难。最初,为了回答弗雷德的问题,我们开发了一个用户友好的 R 包 fitode,它可以方便地将常微分方程拟合到观察到的时间序列。在这里,我们使用这个包来提供一个简短的教程,介绍如何将房室传染病模型拟合到单个观察到的时间序列。我们假设,与弗雷德一样,读者从数学角度熟悉动力系统,但对统计方法或优化技术的经验有限。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验