Suppr超能文献

基于梯度惩罚的 Wasserstein 生成对抗网络和卷积神经网络的运动想象 EEG 分类。

Wasserstein generative adversarial network with gradient penalty and convolutional neural network based motor imagery EEG classification.

机构信息

School of Control Science and Engineering, Tiangong University, Tianjin, People's Republic of China.

Tianjin Key Laboratory of Intelligent Control of Electrical Equipment, Tiangong University, Tianjin, People's Republic of China.

出版信息

J Neural Eng. 2024 Aug 14;21(4). doi: 10.1088/1741-2552/ad6cf5.

Abstract

Due to the difficulty in acquiring motor imagery electroencephalography (MI-EEG) data and ensuring its quality, insufficient training data often leads to overfitting and inadequate generalization capabilities of deep learning-based classification networks. Therefore, we propose a novel data augmentation method and deep learning classification model to enhance the decoding performance of MI-EEG further.The raw EEG signals were transformed into the time-frequency maps as the input to the model by continuous wavelet transform. An improved Wasserstein generative adversarial network with gradient penalty data augmentation method was proposed, effectively expanding the dataset used for model training. Additionally, a concise and efficient deep learning model was designed to improve decoding performance further.It has been demonstrated through validation by multiple data evaluation methods that the proposed generative network can generate more realistic data. Experimental results on the BCI Competition IV 2a and 2b datasets and the actual collected dataset show that classification accuracies are 83.4%, 89.1% and 73.3%, and Kappa values are 0.779, 0.782 and 0.644, respectively. The results indicate that the proposed model outperforms state-of-the-art methods.Experimental results demonstrate that this method effectively enhances MI-EEG data, mitigates overfitting in classification networks, improves MI classification accuracy, and holds positive implications for MI tasks.

摘要

由于获取运动想象脑电 (MI-EEG) 数据并保证其质量较为困难,因此基于深度学习的分类网络通常会因训练数据不足而导致过拟合和泛化能力不足。因此,我们提出了一种新的数据增强方法和深度学习分类模型,以进一步提高 MI-EEG 的解码性能。原始 EEG 信号通过连续小波变换转换为时频图作为模型的输入。提出了一种改进的带梯度惩罚的 Wasserstein 生成对抗网络数据增强方法,有效地扩展了用于模型训练的数据集合。此外,设计了一种简洁高效的深度学习模型,以进一步提高解码性能。通过多种数据评估方法的验证表明,所提出的生成网络可以生成更真实的数据。在 BCI Competition IV 2a 和 2b 数据集以及实际采集的数据上的实验结果表明,分类准确率分别为 83.4%、89.1%和 73.3%,Kappa 值分别为 0.779、0.782 和 0.644。结果表明,所提出的模型优于最先进的方法。实验结果表明,该方法可以有效地增强 MI-EEG 数据,减轻分类网络中的过拟合,提高 MI 分类准确率,对 MI 任务具有积极意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验