Suppr超能文献

基于等离子体的近红外光谱技术在肺癌早期诊断中的应用。

Plasma-based near-infrared spectroscopy for early diagnosis of lung cancer.

机构信息

Health Examination Center, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China.

Experimental Research Center, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China.

出版信息

J Pharm Biomed Anal. 2024 Oct 15;249:116376. doi: 10.1016/j.jpba.2024.116376. Epub 2024 Jul 21.

Abstract

Lung cancer (LC) continues to be a leading death cause in China, primarily due to late diagnosis. This study aimed to evaluate the effectiveness of using plasma-based near-infrared spectroscopy (NIRS) for LC early diagnosis. A total of 171 plasma samples were collected, including 73 healthy controls (HC), 73 LC, and 25 benign lung tumors (B). NIRS was utilized to measure the spectra of samples. Pre-processing methods, including centering and scaling, standard normal variate, multiplicative scatter correction, Savitzky-Golay smoothing, Savitzky-Golay first derivative, and baseline correction were applied. Subsequently, 4 machine learning (ML) algorithms, including partial least squares (PLS), support vector machines (SVM), gradient boosting machine, and random forest, were utilized to develop diagnostic models using train set data. Then, the predictive performance of each model was evaluated using test set samples. The study was conducted in 5 comparisons as follows: LC and HC, LC and B, B and HC, the diseased group (D) and HC, as well as LC, B and HC. Among the 5 comparisons, SVM consistently generated the best performance with a certain pre-processing method, achieving overall accuracy of 1.0 (kappa: 1.0) in the comparisons of LC and HC, B and HC, as well as D and HC. Pre-processing was identified as a crucial step in developing ML models. Interestingly, PLS demonstrated remarkable stability and relatively high predictive performance across the 5 comparisons, even though it did not achieve the top results like SVM. However, none of these algorithms were able to effectively distinguish B from LC. These findings indicate that the combination of plasma-based NIRS with ML algorithms is a rapid, non-invasive, effective, and economical method for LC early diagnosis.

摘要

肺癌(LC)仍是中国主要的致死病因,主要是因为诊断过晚。本研究旨在评估使用基于血浆的近红外光谱(NIRS)进行 LC 早期诊断的效果。共采集了 171 个血浆样本,包括 73 个健康对照(HC)、73 个 LC 和 25 个良性肺肿瘤(B)。使用 NIRS 测量样本的光谱。应用了包括中心化和缩放、标准正态变量、乘法散射校正、Savitzky-Golay 平滑、Savitzky-Golay 一阶导数和基线校正在内的预处理方法。然后,使用训练集数据,采用 4 种机器学习(ML)算法,包括偏最小二乘法(PLS)、支持向量机(SVM)、梯度提升机和随机森林,开发诊断模型。然后,使用测试集样本评估每个模型的预测性能。本研究共进行了 5 个比较,分别为:LC 和 HC、LC 和 B、B 和 HC、疾病组(D)和 HC,以及 LC、B 和 HC。在这 5 个比较中,SVM 始终使用特定的预处理方法产生最佳性能,在 LC 和 HC、B 和 HC 以及 D 和 HC 的比较中,整体准确率达到 1.0(kappa:1.0)。预处理被确定为开发 ML 模型的关键步骤。有趣的是,PLS 表现出了显著的稳定性,在 5 个比较中均具有较高的预测性能,尽管它没有像 SVM 那样达到最高的结果。然而,这些算法都无法有效地将 B 从 LC 中区分出来。这些发现表明,基于血浆的 NIRS 与 ML 算法相结合是一种快速、非侵入性、有效和经济的 LC 早期诊断方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验